/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/pten/api/include/creation.h" #include "paddle/pten/api/lib/utils/allocator.h" #include "paddle/pten/core/dense_tensor.h" #include "paddle/pten/core/kernel_registry.h" namespace paddle { namespace tests { namespace framework = paddle::framework; using DDim = paddle::framework::DDim; // TODO(chenweihang): Remove this test after the API is used in the dygraph TEST(API, full_like) { // 1. create tensor const auto alloc = std::make_shared( paddle::platform::CPUPlace()); auto dense_x = std::make_shared( alloc, pten::DenseTensorMeta(pten::DataType::FLOAT32, framework::make_ddim({3, 2}), pten::DataLayout::NCHW)); auto* dense_x_data = dense_x->mutable_data(); dense_x_data[0] = 0; float val = 1.0; paddle::experimental::Tensor x(dense_x); // 2. test API auto out = paddle::experimental::full_like(x, val, pten::DataType::FLOAT32); // 3. check result ASSERT_EQ(out.dims().size(), 2); ASSERT_EQ(out.dims()[0], 3); ASSERT_EQ(out.numel(), 6); ASSERT_EQ(out.is_cpu(), true); ASSERT_EQ(out.type(), pten::DataType::FLOAT32); ASSERT_EQ(out.layout(), pten::DataLayout::NCHW); ASSERT_EQ(out.initialized(), true); auto dense_out = std::dynamic_pointer_cast(out.impl()); auto* actual_result = dense_out->data(); for (auto i = 0; i < 6; i++) { ASSERT_NEAR(actual_result[i], val, 1e-6f); } } TEST(API, zeros_like) { // 1. create tensor const auto alloc = std::make_shared( paddle::platform::CPUPlace()); auto dense_x = std::make_shared( alloc, pten::DenseTensorMeta(pten::DataType::FLOAT32, framework::make_ddim({3, 2}), pten::DataLayout::NCHW)); auto* dense_x_data = dense_x->mutable_data(); dense_x_data[0] = 1; paddle::experimental::Tensor x(dense_x); // 2. test API auto out = paddle::experimental::zeros_like(x, pten::DataType::INT32); // 3. check result ASSERT_EQ(out.dims().size(), 2); ASSERT_EQ(out.dims()[0], 3); ASSERT_EQ(out.numel(), 6); ASSERT_EQ(out.is_cpu(), true); ASSERT_EQ(out.type(), pten::DataType::INT32); ASSERT_EQ(out.layout(), pten::DataLayout::NCHW); ASSERT_EQ(out.initialized(), true); auto dense_out = std::dynamic_pointer_cast(out.impl()); auto* actual_result = dense_out->data(); for (auto i = 0; i < 6; i++) { ASSERT_EQ(actual_result[i], 0); } } TEST(API, ones_like) { // 1. create tensor const auto alloc = std::make_shared( paddle::platform::CPUPlace()); auto dense_x = std::make_shared( alloc, pten::DenseTensorMeta(pten::DataType::INT32, framework::make_ddim({3, 2}), pten::DataLayout::NCHW)); auto* dense_x_data = dense_x->mutable_data(); dense_x_data[0] = 0; paddle::experimental::Tensor x(dense_x); // 2. test API auto out = paddle::experimental::ones_like(x, pten::DataType::INT32); // 3. check result ASSERT_EQ(out.dims().size(), 2); ASSERT_EQ(out.dims()[0], 3); ASSERT_EQ(out.numel(), 6); ASSERT_EQ(out.is_cpu(), true); ASSERT_EQ(out.type(), pten::DataType::INT32); ASSERT_EQ(out.layout(), pten::DataLayout::NCHW); ASSERT_EQ(out.initialized(), true); auto dense_out = std::dynamic_pointer_cast(out.impl()); auto* actual_result = dense_out->data(); for (auto i = 0; i < 6; i++) { ASSERT_EQ(actual_result[i], 1); } } TEST(API, full1) { // 1. create tensor const auto alloc = std::make_shared( paddle::platform::CPUPlace()); auto dense_shape = std::make_shared( alloc, pten::DenseTensorMeta(pten::DataType::INT64, framework::make_ddim({2}), pten::DataLayout::NCHW)); auto* shape_data = dense_shape->mutable_data(); shape_data[0] = 2; shape_data[1] = 3; auto dense_scalar = std::make_shared( alloc, pten::DenseTensorMeta(pten::DataType::FLOAT32, framework::make_ddim({1}), pten::DataLayout::NCHW)); dense_scalar->mutable_data()[0] = 1.0; paddle::experimental::Tensor value(dense_scalar); paddle::experimental::Tensor tensor_shape(dense_shape); float val = 1.0; // 2. test API auto out = paddle::experimental::full(tensor_shape, value, pten::DataType::FLOAT32); // 3. check result ASSERT_EQ(out.shape().size(), 2UL); ASSERT_EQ(out.shape()[0], 2); ASSERT_EQ(out.numel(), 6); ASSERT_EQ(out.is_cpu(), true); ASSERT_EQ(out.type(), pten::DataType::FLOAT32); ASSERT_EQ(out.layout(), pten::DataLayout::NCHW); ASSERT_EQ(out.initialized(), true); auto dense_out = std::dynamic_pointer_cast(out.impl()); auto* actual_result = dense_out->data(); for (auto i = 0; i < 6; i++) { ASSERT_NEAR(actual_result[i], val, 1e-6f); } } TEST(API, full2) { const auto alloc = std::make_shared( paddle::platform::CPUPlace()); auto dense_scalar = std::make_shared( alloc, pten::DenseTensorMeta(pten::DataType::INT32, framework::make_ddim({1}), pten::DataLayout::NCHW)); dense_scalar->mutable_data()[0] = 2; paddle::experimental::Tensor shape_scalar1(dense_scalar); paddle::experimental::Tensor shape_scalar2(dense_scalar); std::vector list_shape{shape_scalar1, shape_scalar2}; float val = 1.0; auto out = paddle::experimental::full(list_shape, val, pten::DataType::FLOAT32); ASSERT_EQ(out.shape().size(), 2UL); ASSERT_EQ(out.shape()[0], 2); ASSERT_EQ(out.numel(), 4); ASSERT_EQ(out.is_cpu(), true); ASSERT_EQ(out.type(), pten::DataType::FLOAT32); ASSERT_EQ(out.layout(), pten::DataLayout::NCHW); ASSERT_EQ(out.initialized(), true); auto dense_out = std::dynamic_pointer_cast(out.impl()); auto* actual_result = dense_out->data(); for (auto i = 0; i < 4; i++) { ASSERT_NEAR(actual_result[i], val, 1e-6f); } } TEST(API, full3) { std::vector vector_shape{2, 3}; float val = 1.0; auto out = paddle::experimental::full(vector_shape, val, pten::DataType::INT32); ASSERT_EQ(out.shape().size(), 2UL); ASSERT_EQ(out.shape()[0], 2); ASSERT_EQ(out.numel(), 6); ASSERT_EQ(out.is_cpu(), true); ASSERT_EQ(out.type(), pten::DataType::INT32); ASSERT_EQ(out.layout(), pten::DataLayout::NCHW); ASSERT_EQ(out.initialized(), true); auto dense_out = std::dynamic_pointer_cast(out.impl()); auto* actual_result = dense_out->data(); for (auto i = 0; i < 6; i++) { ASSERT_EQ(actual_result[i], 1); } } } // namespace tests } // namespace paddle