# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: define random functions from ..fluid import core from ..fluid.framework import in_dygraph_mode, Variable, convert_np_dtype_to_dtype_ from ..fluid.layer_helper import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape from ..fluid.layers import utils import paddle def bernoulli(x, name=None): """ This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution. The input ``x`` is a tensor with probabilities for generating the random binary number. Each element in ``x`` should be in [0, 1], and the out is generated by: .. math:: out_i ~ Bernoulli (x_i) Args: x(Tensor): A tensor with probabilities for generating the random binary number. The data type should be float32, float64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``. Examples: .. code-block:: python import paddle paddle.set_device('cpu') # on CPU device paddle.seed(100) x = paddle.rand([2,3]) print(x) # [[0.55355281, 0.20714243, 0.01162981], # [0.51577556, 0.36369765, 0.26091650]] out = paddle.bernoulli(x) print(out) # [[1., 0., 1.], # [0., 1., 0.]] """ if in_dygraph_mode(): return core.ops.bernoulli(x) check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli") helper = LayerHelper("randint", **locals()) out = helper.create_variable_for_type_inference( dtype=x.dtype) # maybe set out to int32 ? helper.append_op( type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={}) return out def multinomial(x, num_samples=1, replacement=False, name=None): """ This OP returns a Tensor filled with random values sampled from a Multinomical distribution. The input ``x`` is a tensor with probabilities for generating the random number. Each element in ``x`` should be larger or equal to 0, but not all 0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement`` is True, a category can be sampled more than once. Args: x(Tensor): A tensor with probabilities for generating the random number. The data type should be float32, float64. num_samples(int, optional): Number of samples, default is 1. replacement(bool, optional): Whether it is a replaceable sample, default is False. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples. Examples: .. code-block:: python import paddle paddle.seed(100) # on CPU device x = paddle.rand([2,4]) print(x) # [[0.5535528 0.20714243 0.01162981 0.51577556] # [0.36369765 0.2609165 0.18905126 0.5621971 ]] paddle.seed(200) # on CPU device out1 = paddle.multinomial(x, num_samples=5, replacement=True) print(out1) # [[3 3 0 0 0] # [3 3 3 1 0]] # out2 = paddle.multinomial(x, num_samples=5) # InvalidArgumentError: When replacement is False, number of samples # should be less than non-zero categories paddle.seed(300) # on CPU device out3 = paddle.multinomial(x, num_samples=3) print(out3) # [[3 0 1] # [3 1 0]] """ assert core.is_compiled_with_rocm() == False, ( "multinomial op is not supported on ROCM yet.") if in_dygraph_mode(): return core.ops.multinomial(x, 'num_samples', num_samples, 'replacement', replacement) check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial") helper = LayerHelper("multinomial", **locals()) out = helper.create_variable_for_type_inference( dtype=convert_np_dtype_to_dtype_('int64')) helper.append_op( type='multinomial', inputs={"X": x}, outputs={'Out': out}, attrs={'num_samples': num_samples, 'replacement': replacement}) return out def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None): """ This OP returns a Tensor filled with random values sampled from a Gaussian distribution, with ``shape`` and ``dtype``. Args: shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape`` is a list or tuple, the elements of it should be integers or Tensors (with the shape [1], and the data type int32 or int64). If ``shape`` is a Tensor, it should be a 1-D Tensor(with the data type int32 or int64). mean (float|int, optional): Mean of the output tensor, default is 0.0. std (float|int, optional): Standard deviation of the output tensor, default is 1.0. seed (int, optional): Random seed of generator. dtype (str|np.dtype, optional): The data type of the output Tensor. Supported data types: float32, float64. Default is None, use global default dtype (see ``get_default_dtype`` for details). name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with random values sampled from a Gaussian distribution, with ``shape`` and ``dtype``. """ op_type_for_check = 'gaussian/standard_normal/randn/normal' seed = 0 if dtype is None: dtype = paddle.framework.get_default_dtype() if dtype not in ['float32', 'float64']: raise TypeError( "{} only supports [float32, float64], but the default dtype is {}" .format(op_type_for_check, dtype)) if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) if in_dygraph_mode(): shape = utils.convert_shape_to_list(shape) return core.ops.gaussian_random('shape', shape, 'mean', float(mean), 'std', float(std), 'seed', seed, 'dtype', dtype) check_shape(shape, op_type_for_check) check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check) inputs = {} attrs = { 'mean': mean, 'std': std, 'seed': seed, 'dtype': dtype, 'use_mkldnn': False } utils.get_shape_tensor_inputs( inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check) helper = LayerHelper('gaussian', **locals()) out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='gaussian_random', inputs=inputs, outputs={'Out': out}, attrs=attrs) out.stop_gradient = True return out def standard_normal(shape, dtype=None, name=None): """ This OP returns a Tensor filled with random values sampled from a standard normal distribution with mean 0 and standard deviation 1, with ``shape`` and ``dtype``. Args: shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape`` is a list or tuple, the elements of it should be integers or Tensors (with the shape [1], and the data type int32 or int64). If ``shape`` is a Tensor, it should be a 1-D Tensor(with the data type int32 or int64). dtype (str|np.dtype, optional): The data type of the output Tensor. Supported data types: float32, float64. Default is None, use global default dtype (see ``get_default_dtype`` for details). name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with random values sampled from a standard normal distribution with mean 0 and standard deviation 1, with ``shape`` and ``dtype``. Examples: .. code-block:: python import paddle # example 1: attr shape is a list which doesn't contain Tensor. out1 = paddle.standard_normal(shape=[2, 3]) # [[-2.923464 , 0.11934398, -0.51249987], # random # [ 0.39632758, 0.08177969, 0.2692008 ]] # random # example 2: attr shape is a list which contains Tensor. dim1 = paddle.to_tensor([2], 'int64') dim2 = paddle.to_tensor([3], 'int32') out2 = paddle.standard_normal(shape=[dim1, dim2, 2]) # [[[-2.8852394 , -0.25898588], # random # [-0.47420555, 0.17683524], # random # [-0.7989969 , 0.00754541]], # random # [[ 0.85201347, 0.32320443], # random # [ 1.1399018 , 0.48336947], # random # [ 0.8086993 , 0.6868893 ]]] # random # example 3: attr shape is a Tensor, the data type must be int64 or int32. shape_tensor = paddle.to_tensor([2, 3]) out3 = paddle.standard_normal(shape_tensor) # [[-2.878077 , 0.17099959, 0.05111201] # random # [-0.3761474, -1.044801 , 1.1870178 ]] # random """ return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name) def randn(shape, dtype=None, name=None): """ This OP returns a Tensor filled with random values sampled from a standard normal distribution with mean 0 and standard deviation 1, with ``shape`` and ``dtype``. Args: shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape`` is a list or tuple, the elements of it should be integers or Tensors (with the shape [1], and the data type int32 or int64). If ``shape`` is a Tensor, it should be a 1-D Tensor(with the data type int32 or int64). dtype (str|np.dtype, optional): The data type of the output Tensor. Supported data types: float32, float64. Default is None, use global default dtype (see ``get_default_dtype`` for details). name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with random values sampled from a standard normal distribution with mean 0 and standard deviation 1, with ``shape`` and ``dtype``. Examples: .. code-block:: python import paddle # example 1: attr shape is a list which doesn't contain Tensor. out1 = paddle.randn(shape=[2, 3]) # [[-2.923464 , 0.11934398, -0.51249987], # random # [ 0.39632758, 0.08177969, 0.2692008 ]] # random # example 2: attr shape is a list which contains Tensor. dim1 = paddle.to_tensor([2], 'int64') dim2 = paddle.to_tensor([3], 'int32') out2 = paddle.randn(shape=[dim1, dim2, 2]) # [[[-2.8852394 , -0.25898588], # random # [-0.47420555, 0.17683524], # random # [-0.7989969 , 0.00754541]], # random # [[ 0.85201347, 0.32320443], # random # [ 1.1399018 , 0.48336947], # random # [ 0.8086993 , 0.6868893 ]]] # random # example 3: attr shape is a Tensor, the data type must be int64 or int32. shape_tensor = paddle.to_tensor([2, 3]) out3 = paddle.randn(shape_tensor) # [[-2.878077 , 0.17099959, 0.05111201] # random # [-0.3761474, -1.044801 , 1.1870178 ]] # random """ return standard_normal(shape, dtype, name) def normal(mean=0.0, std=1.0, shape=None, name=None): """ This OP returns a Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` (standard deviation) . If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``. If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``. If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32. If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same. Args: mean (float|Tensor, optional): The mean of the output Tensor's normal distribution. If ``mean`` is float, all elements of the output Tensor shared the same mean. If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means. Default is 0.0 std (float|Tensor, optional): The standard deviation of the output Tensor's normal distribution. If ``std`` is float, all elements of the output Tensor shared the same standard deviation. If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations. Defaule is 1.0 shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape`` is a list or tuple, the elements of it should be integers or Tensors (with the shape [1], and the data type int32 or int64). If ``shape`` is a Tensor, it should be a 1-D Tensor(with the data type int32 or int64). If ``mean`` or ``std`` is a Tensor, the shape of the output Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored. Default is None name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` . Examples: .. code-block:: python import paddle out1 = paddle.normal(shape=[2, 3]) # [[ 0.17501129 0.32364586 1.561118 ] # random # [-1.7232178 1.1545963 -0.76156676]] # random mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0]) out2 = paddle.normal(mean=mean_tensor) # [ 0.18644847 -1.19434458 3.93694787] # random std_tensor = paddle.to_tensor([1.0, 2.0, 3.0]) out3 = paddle.normal(mean=mean_tensor, std=std_tensor) # [1.00780561 3.78457445 5.81058198] # random """ if not in_dygraph_mode(): check_type(mean, 'mean', (int, float, Variable), 'normal') check_type(std, 'std', (int, float, Variable), 'normal') if isinstance(mean, Variable): check_dtype( mean.dtype, 'mean', ['float32', 'float64'], 'normal', "If mean is Tensor, it's data type only support float32, float64." ) if isinstance(std, Variable): check_dtype( std.dtype, 'std', ['float32', 'float64'], 'normal', "If std is Tensor, it's data type only support float32, float64." ) if shape is not None: check_shape(shape, 'normal') if isinstance(mean, Variable): if isinstance(std, Variable): if std.dtype != mean.dtype: std = paddle.cast(std, mean.dtype) mean_shape = paddle.shape(mean) std = paddle.reshape(std, mean_shape) else: std = float(std) out = standard_normal(paddle.shape(mean), mean.dtype, name) elif isinstance(std, Variable): mean = float(mean) out = standard_normal(paddle.shape(std), std.dtype, name) else: return gaussian(shape=shape, mean=mean, std=std, name=name) out = out * std + mean if not in_dygraph_mode(): out.stop_grediant = True return out def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None): """ This OP returns a Tensor filled with random values sampled from a uniform distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``. Examples: .. code-block:: text Input: shape = [1, 2] Output: result=[[0.8505902, 0.8397286]] Args: shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape`` is a list or tuple, the elements of it should be integers or Tensors (with the shape [1], and the data type int32 or int64). If ``shape`` is a Tensor, it should be a 1-D Tensor(with the data type int32 or int64). dtype(str|np.dtype, optional): The data type of the output Tensor. Supported data types: float32, float64. Default is None, use global default dtype (see ``get_default_dtype`` for details). min(float|int, optional): The lower bound on the range of random values to generate, ``min`` is included in the range. Default is -1.0. max(float|int, optional): The upper bound on the range of random values to generate, ``max`` is excluded in the range. Default is 1.0. seed(int, optional): Random seed used for generating samples. 0 means use a seed generated by the system. Note that if seed is not 0, this operator will always generate the same random numbers every time. Default is 0. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with random values sampled from a uniform distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``. Raises: TypeError: If ``shape`` is not list, tuple, Tensor. TypeError: If ``dtype`` is not float32, float64. Examples: .. code-block:: python import paddle # example 1: # attr shape is a list which doesn't contain Tensor. out1 = paddle.uniform(shape=[3, 4]) # [[ 0.84524226, 0.6921872, 0.56528175, 0.71690357], # random # [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random # [ 0.433519, 0.39483607, -0.8660099, 0.83664286]] # random # example 2: # attr shape is a list which contains Tensor. dim1 = paddle.to_tensor([2], 'int64') dim2 = paddle.to_tensor([3], 'int32') out2 = paddle.uniform(shape=[dim1, dim2]) # [[-0.9951253, 0.30757582, 0.9899647 ], # random # [ 0.5864527, 0.6607096, -0.8886161]] # random # example 3: # attr shape is a Tensor, the data type must be int64 or int32. shape_tensor = paddle.to_tensor([2, 3]) out3 = paddle.uniform(shape_tensor) # [[-0.8517412, -0.4006908, 0.2551912 ], # random # [ 0.3364414, 0.36278176, -0.16085452]] # random """ if dtype is None: dtype = paddle.framework.get_default_dtype() if dtype not in ['float32', 'float64']: raise TypeError( "uniform/rand only supports [float32, float64], but the default dtype is {}". format(dtype)) if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) if in_dygraph_mode(): shape = utils.convert_shape_to_list(shape) return core.ops.uniform_random('shape', shape, 'min', float(min), 'max', float(max), 'seed', seed, 'dtype', dtype) check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand') check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand') inputs = dict() attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype} utils.get_shape_tensor_inputs( inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand') helper = LayerHelper("uniform", **locals()) out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="uniform_random", inputs=inputs, attrs=attrs, outputs={"Out": out}) return out def randint(low=0, high=None, shape=[1], dtype=None, name=None): """ This OP returns a Tensor filled with random integers from a discrete uniform distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``. If ``high`` is None (the default), the range is [0, ``low``). Args: low (int): The lower bound on the range of random values to generate. The ``low`` is included in the range. If ``high`` is None, the range is [0, ``low``). Default is 0. high (int, optional): The upper bound on the range of random values to generate, the ``high`` is excluded in the range. Default is None (see above for behavior if high = None). Default is None. shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape`` is a list or tuple, the elements of it should be integers or Tensors (with the shape [1], and the data type int32 or int64). If ``shape`` is a Tensor, it should be a 1-D Tensor(with the data type int32 or int64). Default is [1]. dtype (str|np.dtype, optional): The data type of the output tensor. Supported data types: int32, int64. If ``dytpe`` is None, the data type is int64. Default is None. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with random integers from a discrete uniform distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``. Examples: .. code-block:: python import paddle # example 1: # attr shape is a list which doesn't contain Tensor. out1 = paddle.randint(low=-5, high=5, shape=[3]) # [0, -3, 2] # random # example 2: # attr shape is a list which contains Tensor. dim1 = paddle.to_tensor([2], 'int64') dim2 = paddle.to_tensor([3], 'int32') out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2]) # [[0, -1, -3], # random # [4, -2, 0]] # random # example 3: # attr shape is a Tensor shape_tensor = paddle.to_tensor(3) out3 = paddle.randint(low=-5, high=5, shape=shape_tensor) # [-2, 2, 3] # random # example 4: # data type is int32 out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32') # [-5, 4, -4] # random # example 5: # Input only one parameter # low=0, high=10, shape=[1], dtype='int64' out5 = paddle.randint(10) # [7] # random """ if high is None: if low <= 0: raise ValueError( "If high is None, low must be greater than 0, but received low = {0}.". format(low)) high = low low = 0 if dtype is None: dtype = 'int64' if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) if in_dygraph_mode(): shape = utils.convert_shape_to_list(shape) return core.ops.randint('shape', shape, 'low', low, 'high', high, 'seed', 0, 'dtype', dtype) check_shape(shape, 'randint') check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint') if low >= high: raise ValueError( "randint's low must less then high, but received low = {0}, " "high = {1}".format(low, high)) inputs = dict() attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype} utils.get_shape_tensor_inputs( inputs=inputs, attrs=attrs, shape=shape, op_type='randint') helper = LayerHelper("randint", **locals()) out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs) return out def randperm(n, dtype="int64", name=None): """ This OP returns a 1-D Tensor filled with random permutation values from 0 to n-1, with ``dtype``. Args: n (int): The upper bound (exclusive), and it should be greater than 0. dtype (str|np.dtype, optional): The data type of the output Tensor. Supported data types: int32, int64, float32, float64. Default is int64. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A 1-D Tensor filled with random permutation values from 0 to n-1, with ``dtype``. Examples: .. code-block:: python import paddle out1 = paddle.randperm(5) # [4, 1, 2, 3, 0] # random out2 = paddle.randperm(7, 'int32') # [1, 6, 2, 0, 4, 3, 5] # random """ if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) if in_dygraph_mode(): return core.ops.randperm('n', n, 'seed', 0, 'dtype', dtype) if n < 1: raise ValueError("The input n should be greater than 0 in randperm op.") check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'], 'randperm') helper = LayerHelper("randperm", **locals()) out = helper.create_variable_for_type_inference(dtype) attrs = {'n': n, 'dtype': dtype, 'seed': 0} helper.append_op( type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs) out.stop_gradient = True return out def rand(shape, dtype=None, name=None): """ This OP returns a Tensor filled with random values sampled from a uniform distribution in the range [0, 1), with ``shape`` and ``dtype``. Args: shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape`` is a list or tuple, the elements of it should be integers or Tensors (with the shape [1], and the data type int32 or int64). If ``shape`` is a Tensor, it should be a 1-D Tensor(with the data type int32 or int64). dtype (str|np.dtype, optional): The data type of the output Tensor. Supported data types: float32, float64. Default is None, use global default dtype (see ``get_default_dtype`` for details). name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with random values sampled from a uniform distribution in the range [0, 1), with ``shape`` and ``dtype``. Examples: .. code-block:: python import paddle # example 1: attr shape is a list which doesn't contain Tensor. out1 = paddle.rand(shape=[2, 3]) # [[0.451152 , 0.55825245, 0.403311 ], # random # [0.22550228, 0.22106001, 0.7877319 ]] # random # example 2: attr shape is a list which contains Tensor. dim1 = paddle.to_tensor([2], 'int64') dim2 = paddle.to_tensor([3], 'int32') out2 = paddle.rand(shape=[dim1, dim2, 2]) # [[[0.8879919 , 0.25788337], # random # [0.28826773, 0.9712097 ], # random # [0.26438272, 0.01796806]], # random # [[0.33633623, 0.28654453], # random # [0.79109055, 0.7305809 ], # random # [0.870881 , 0.2984597 ]]] # random # example 3: attr shape is a Tensor, the data type must be int64 or int32. shape_tensor = paddle.to_tensor([2, 3]) out3 = paddle.rand(shape_tensor) # [[0.22920267, 0.841956 , 0.05981819], # random # [0.4836288 , 0.24573246, 0.7516129 ]] # random """ return uniform(shape, dtype, min=0.0, max=1.0, name=name)