# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest import paddle import paddle.fluid as fluid from paddle.fluid import Program, program_guard class TestCrossOp(OpTest): def setUp(self): self.op_type = "cross" self.python_api = paddle.cross self.initTestCase() self.inputs = { 'X': np.random.random(self.shape).astype(self.dtype), 'Y': np.random.random(self.shape).astype(self.dtype), } self.init_output() def initTestCase(self): self.attrs = {'dim': -2} self.dtype = np.float64 self.shape = (1024, 3, 1) def init_output(self): x = np.squeeze(self.inputs['X'], 2) y = np.squeeze(self.inputs['Y'], 2) z_list = [] for i in range(1024): z_list.append(np.cross(x[i], y[i])) self.outputs = {'Out': np.array(z_list).reshape(self.shape)} def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out') class TestCrossOpCase1(TestCrossOp): def initTestCase(self): self.shape = (2048, 3) self.dtype = np.float32 def init_output(self): z_list = [] for i in range(2048): z_list.append(np.cross(self.inputs['X'][i], self.inputs['Y'][i])) self.outputs = {'Out': np.array(z_list).reshape(self.shape)} class TestCrossFP16Op(TestCrossOp): def initTestCase(self): self.shape = (2048, 3) self.dtype = np.float16 def init_output(self): z_list = [] for i in range(2048): z_list.append(np.cross(self.inputs['X'][i], self.inputs['Y'][i])) self.outputs = {'Out': np.array(z_list).reshape(self.shape)} class TestCrossAPI(unittest.TestCase): def input_data(self): self.data_x = np.array( [[1.0, 1.0, 1.0], [2.0, 2.0, 2.0], [3.0, 3.0, 3.0]] ).astype('float32') self.data_y = np.array( [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]] ).astype('float32') def test_cross_api(self): self.input_data() # case 1: with program_guard(Program(), Program()): x = paddle.static.data(name='x', shape=[-1, 3], dtype="float32") y = paddle.static.data(name='y', shape=[-1, 3], dtype="float32") z = paddle.cross(x, y, axis=1) exe = fluid.Executor(fluid.CPUPlace()) (res,) = exe.run( feed={'x': self.data_x, 'y': self.data_y}, fetch_list=[z.name], return_numpy=False, ) expect_out = np.array( [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] ) np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05) # case 2: with program_guard(Program(), Program()): x = paddle.static.data(name='x', shape=[-1, 3], dtype="float32") y = paddle.static.data(name='y', shape=[-1, 3], dtype="float32") z = paddle.cross(x, y) exe = fluid.Executor(fluid.CPUPlace()) (res,) = exe.run( feed={'x': self.data_x, 'y': self.data_y}, fetch_list=[z.name], return_numpy=False, ) expect_out = np.array( [[-1.0, -1.0, -1.0], [2.0, 2.0, 2.0], [-1.0, -1.0, -1.0]] ) np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05) # case 3: with program_guard(Program(), Program()): x = fluid.data(name="x", shape=[-1, 3], dtype="float32") y = fluid.data(name='y', shape=[-1, 3], dtype='float32') y_1 = paddle.cross(x, y, name='result') self.assertEqual(('result' in y_1.name), True) def test_dygraph_api(self): self.input_data() # case 1: # with fluid.dygraph.guard(): # x = fluid.dygraph.to_variable(self.data_x) # y = fluid.dygraph.to_variable(self.data_y) # z = paddle.cross(x, y) # np_z = z.numpy() # expect_out = np.array([[-1.0, -1.0, -1.0], [2.0, 2.0, 2.0], # [-1.0, -1.0, -1.0]]) # np.testing.assert_allclose(expect_out, np_z, rtol=1e-05) # case 2: with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(self.data_x) y = fluid.dygraph.to_variable(self.data_y) z = paddle.cross(x, y, axis=1) np_z = z.numpy() expect_out = np.array( [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] ) np.testing.assert_allclose(expect_out, np_z, rtol=1e-05) if __name__ == '__main__': paddle.enable_static() unittest.main()