# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest, paddle_static_guard, randomize_probability import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid import Program, program_guard class TestCrossEntropyOp(OpTest): """Test cross-entropy with discrete one-hot labels.""" def setUp(self): self.op_type = "cross_entropy" self.soft_label = False self.ignore_index = -100 self.dtype = np.float64 self.batch_size = 30 self.class_num = 10 self.init_dtype_type() self.init_attr_type() self.init_bs_class_num() self.init_x() self.init_label() self.get_cross_entropy() self.inputs = {"X": self.x, "Label": self.label} self.outputs = {"Y": self.cross_entropy} self.attrs = { "soft_label": self.soft_label, "ignore_index": self.ignore_index, } def init_x(self): self.x = randomize_probability( self.batch_size, self.class_num, dtype=self.dtype ) def init_label(self): self.label = np.random.randint( 0, self.class_num, (self.batch_size, 1), dtype="int64" ) def get_cross_entropy(self): self.cross_entropy = np.asmatrix( [ [-np.log(self.x[i][self.label[i][0]])] for i in range(self.x.shape[0]) ], dtype="float64", ) def init_attr_type(self): pass def init_dtype_type(self): pass def init_bs_class_num(self): pass def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Y", numeric_grad_delta=0.001) class TestCrossEntropyOpRemoveLastDim(TestCrossEntropyOp): """Test cross-entropy with discrete one-hot labels with shape [batch_size]""" def init_label(self): self.label = np.random.randint( 0, self.class_num, (self.batch_size), dtype="int64" ) def get_cross_entropy(self): self.cross_entropy = np.asmatrix( [-np.log(self.x[i][self.label[i]]) for i in range(self.x.shape[0])], dtype="float64", ) class TestCrossEntropyOp2(TestCrossEntropyOp): """Test cross-entropy with vectorized soft labels.""" def init_label(self): self.label = np.random.uniform( 0.1, 1.0, [self.batch_size, self.class_num] ).astype(self.dtype) self.label /= self.label.sum(axis=1, keepdims=True) def get_cross_entropy(self): self.cross_entropy = ( (-self.label * np.log(self.x)) .sum(axis=1, keepdims=True) .astype(self.dtype) ) def init_attr_type(self): self.soft_label = True def init_dtype_type(self): self.dtype = np.float64 def init_bs_class_num(self): self.batch_size = 5 self.class_num = 37 def test_check_grad(self): self.check_grad( ["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001 ) class TestCrossEntropyOp3(TestCrossEntropyOp): """Test cross-entropy with vectorized one-hot representation of labels.""" def init_label(self): self.label_index = np.random.randint( 0, self.class_num, (self.batch_size) ) self.label = np.zeros(self.x.shape).astype(self.dtype) self.label[np.arange(self.batch_size), self.label_index] = 1 def get_cross_entropy(self): self.cross_entropy = np.asmatrix( [ [-np.log(self.x[i][self.label_index[i]])] for i in range(self.x.shape[0]) ] ).astype(self.dtype) def init_attr_type(self): self.soft_label = True def init_dtype_type(self): self.dtype = np.float64 def init_bs_class_num(self): self.batch_size = 5 self.class_num = 27 def test_check_grad(self): self.check_grad( ["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001 ) class TestCrossEntropyOp4(TestCrossEntropyOp): """Test high rank tensor cross-entropy with discrete one-hot labels.""" def init_x(self): self.shape = [10, 2, 4] self.ins_num = np.prod(np.array(self.shape)) self.X_2d = randomize_probability(self.ins_num, self.class_num).astype( self.dtype ) self.x = self.X_2d.reshape(self.shape + [self.class_num]) def init_label(self): self.label_2d = np.random.randint( 0, self.class_num, (self.ins_num, 1), dtype="int64" ) self.label = self.label_2d.reshape(self.shape + [1]) def get_cross_entropy(self): cross_entropy_2d = np.asmatrix( [ [-np.log(self.X_2d[i][self.label_2d[i][0]])] for i in range(self.X_2d.shape[0]) ] ).astype(self.dtype) self.cross_entropy = np.array(cross_entropy_2d).reshape( self.shape + [1] ) def init_attr_type(self): self.soft_label = False def init_dtype_type(self): self.dtype = np.float64 def init_bs_class_num(self): self.class_num = 10 class TestCrossEntropyOp4RemoveLastDim(TestCrossEntropyOp4): """Test high rank tensor cross-entropy with discrete one-hot labels with shape [batch_size]""" def init_label(self): self.label_2d = np.random.randint( 0, self.class_num, (self.ins_num, 1), dtype="int64" ) self.label = self.label_2d.reshape(self.shape) def get_cross_entropy(self): cross_entropy_2d = np.asmatrix( [ [-np.log(self.X_2d[i][self.label_2d[i][0]])] for i in range(self.X_2d.shape[0]) ] ).astype(self.dtype) self.cross_entropy = np.array(cross_entropy_2d).reshape(self.shape) class TestCrossEntropyOp5(TestCrossEntropyOp): """Test high rank tensor cross-entropy with vectorized soft labels.""" def init_x(self): self.shape = [4, 3] self.ins_num = np.prod(np.array(self.shape)) self.X_2d = randomize_probability(self.ins_num, self.class_num).astype( self.dtype ) self.x = self.X_2d.reshape(self.shape + [self.class_num]) def init_label(self): self.label_2d = np.random.uniform( 0.1, 1.0, [self.ins_num, self.class_num] ).astype(self.dtype) self.label_2d /= self.label_2d.sum(axis=1, keepdims=True) self.label = self.label_2d.reshape(self.shape + [self.class_num]) def get_cross_entropy(self): cross_entropy_2d = ( (-self.label_2d * np.log(self.X_2d)) .sum(axis=1, keepdims=True) .astype(self.dtype) ) self.cross_entropy = np.array(cross_entropy_2d).reshape( self.shape + [1] ) def init_attr_type(self): self.soft_label = True def init_dtype_type(self): self.dtype = np.float64 def init_bs_class_num(self): self.class_num = 37 def test_check_grad(self): self.check_grad( ["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001 ) class TestCrossEntropyOp6(TestCrossEntropyOp): """Test high rank tensor cross-entropy with vectorized one-hot representation of labels.""" def init_x(self): self.shape = [4, 3, 2] self.ins_num = np.prod(np.array(self.shape)) self.X_2d = randomize_probability(self.ins_num, self.class_num).astype( self.dtype ) self.x = self.X_2d.reshape(self.shape + [self.class_num]) def init_label(self): self.label_index_2d = np.random.randint( 0, self.class_num, (self.ins_num), dtype="int64" ) label_2d = np.zeros(self.X_2d.shape) label_2d[np.arange(self.ins_num), self.label_index_2d] = 1 self.label = label_2d.reshape(self.shape + [self.class_num]).astype( self.dtype ) def get_cross_entropy(self): cross_entropy_2d = np.asmatrix( [ [-np.log(self.X_2d[i][self.label_index_2d[i]])] for i in range(self.X_2d.shape[0]) ] ) self.cross_entropy = ( np.array(cross_entropy_2d) .reshape(self.shape + [1]) .astype(self.dtype) ) def init_attr_type(self): self.soft_label = True def init_dtype_type(self): self.dtype = np.float64 def init_bs_class_num(self): self.class_num = 17 def test_check_grad(self): self.check_grad( ["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001 ) class TestCrossEntropyOp7(TestCrossEntropyOp): """Test cross-entropy with ignore index.""" def init_label(self): self.label = np.random.randint( 0, self.class_num, (self.batch_size, 1), dtype="int64" ) def get_cross_entropy(self): self.cross_entropy = np.asmatrix( [ [-np.log(self.x[i][self.label[i][0]])] if self.label[i][0] != self.ignore_index else [0] for i in range(self.x.shape[0]) ] ).astype(self.dtype) def init_attr_type(self): self.soft_label = False self.ignore_index = 3 def init_dtype_type(self): self.dtype = np.float64 def init_bs_class_num(self): self.batch_size = 30 self.class_num = 10 class TestCrossEntropyOp7RemoveLastDim(TestCrossEntropyOp7): """Test cross-entropy with ignore index with shape [batch_size].""" def init_label(self): self.label = np.random.randint( 0, self.class_num, (self.batch_size), dtype="int64" ) def get_cross_entropy(self): self.cross_entropy = np.asmatrix( [ [-np.log(self.x[i][self.label[i]])] if self.label[i] != self.ignore_index else [0] for i in range(self.x.shape[0]) ] ).astype(self.dtype) self.cross_entropy = ( np.array(self.cross_entropy) .reshape([self.batch_size]) .astype(self.dtype) ) # Add Fp16 test def create_test_class(parent, cls_name): @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCrossEntropyFP16Op(parent): def init_dtype_type(self): return np.float16 def test_check_output(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=2e-1) def test_check_grad(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_grad_with_place( place, ['X'], 'Y', max_relative_error=0.9 ) cls_name = "{0}".format(cls_name) TestCrossEntropyFP16Op.__name__ = cls_name globals()[cls_name] = TestCrossEntropyFP16Op create_test_class(TestCrossEntropyOp, "TestCrossEntropyF16Op") # create_test_class(TestCrossEntropyOp2, "TestCrossEntropyF16Op2") create_test_class(TestCrossEntropyOp3, "TestCrossEntropyF16Op3") create_test_class(TestCrossEntropyOp4, "TestCrossEntropyF16Op4") create_test_class( TestCrossEntropyOp4RemoveLastDim, "TestCrossEntropyF16Op4RemoveLastDim" ) # create_test_class(TestCrossEntropyOp5, "TestCrossEntropyF16Op5") create_test_class(TestCrossEntropyOp6, "TestCrossEntropyF16Op6") create_test_class(TestCrossEntropyOp7, "TestCrossEntropyF16Op7") create_test_class( TestCrossEntropyOp7RemoveLastDim, "TestCrossEntropyF16Op7RemoveLastDim" ) class TestCrossEntropyOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): def test_Variable(): # the input of cross_entropy must be Variable. x1 = fluid.create_lod_tensor( np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace() ) lab1 = fluid.create_lod_tensor( np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace() ) paddle.nn.functional.cross_entropy( x1, lab1, reduction='none', use_softmax=False ) self.assertRaises(TypeError, test_Variable) def test_dtype(): with paddle_static_guard(): # the input dtype of cross_entropy must be float16 or float32 or float64 # float16 only can be set on GPU place x2 = paddle.static.data( name='x2', shape=[-1, 3, 4, 5, 6], dtype="int32" ) lab2 = paddle.static.data( name='lab2', shape=[-1, 3, 4, 5, 6], dtype="int32" ) paddle.nn.functional.cross_entropy( x2, lab2, reduction='none', use_softmax=False ) self.assertRaises(TypeError, test_dtype) if __name__ == "__main__": unittest.main()