/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Copyright (c) 2022 NVIDIA Corporation. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/backends/gpu/gpu_context.h" #include #include #include #include #include #include #include #include "glog/logging.h" #include "paddle/phi/api/ext/exception.h" #include "paddle/phi/backends/gpu/gpu_decls.h" #include "paddle/phi/backends/gpu/gpu_info.h" #include "paddle/phi/backends/gpu/gpu_resources.h" #include "paddle/phi/common/float16.h" #include "paddle/phi/common/place.h" #include "paddle/phi/core/allocator.h" #include "paddle/phi/core/cuda_stream.h" #ifdef PADDLE_WITH_CUDA #include "paddle/phi/backends/dynload/cublas.h" #include "paddle/phi/backends/dynload/cudnn.h" #include "paddle/phi/backends/dynload/cusolver.h" #include "paddle/phi/backends/dynload/cusparse.h" #if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL) #include "paddle/phi/backends/dynload/nccl.h" #endif // !defined(__APPLE__) && defined(PADDLE_WITH_NCCL) #endif // PADDLE_WITH_CUDA #ifdef PADDLE_WITH_HIP #include "paddle/phi/backends/dynload/miopen.h" #include "paddle/phi/backends/dynload/rocblas.h" #if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL) #include "paddle/phi/backends/dynload/rccl.h" #endif // !defined(__APPLE__) && defined(PADDLE_WITH_RCCL) #endif // PADDLE_WITH_HIP // NOTE: The paddle framework should add WITH_EIGEN option to support compile // without eigen. #include "unsupported/Eigen/CXX11/Tensor" #include "paddle/phi/core/enforce.h" namespace phi { namespace internal { class EigenGpuStreamDevice : public Eigen::StreamInterface { public: EigenGpuStreamDevice() : scratch_(nullptr), semaphore_(nullptr) { Eigen::initializeDeviceProp(); } ~EigenGpuStreamDevice() override {} void Reinitialize(gpuStream_t cuda_stream, Allocator* allocator, GPUPlace place) { stream_ = cuda_stream; place_ = place; allocator_ = allocator; device_prop_ = &Eigen::m_deviceProperties[place.device]; } const gpuStream_t& stream() const override { return stream_; } const gpuDeviceProp& deviceProperties() const override { return *device_prop_; } void* allocate(size_t num_bytes) const override { if (UNLIKELY(num_bytes == 0)) { return nullptr; } auto buf = allocator_->Allocate(num_bytes); VLOG(4) << "Eigen allocated at " << buf->ptr() << " requested " << num_bytes; void* retv = buf->ptr(); { std::lock_guard lock(mtx_); allocations_.emplace(retv, std::move(buf)); } return retv; } void deallocate(void* buffer) const override { if (LIKELY(buffer)) { std::lock_guard lock(mtx_); allocations_.erase(buffer); } } void* scratchpad() const override { if (scratch_ == NULL) { scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int)); } return scratch_; } unsigned int* semaphore() const override { if (semaphore_ == NULL) { char* scratch = static_cast(scratchpad()) + Eigen::kGpuScratchSize; semaphore_ = reinterpret_cast(scratch); #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS( hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), stream())); #else PADDLE_ENFORCE_GPU_SUCCESS( cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), stream())); #endif } return semaphore_; } private: GPUPlace place_; gpuStream_t stream_; // not owned; Allocator* allocator_; // not owned; const gpuDeviceProp* device_prop_; // not owned; mutable void* scratch_; mutable unsigned int* semaphore_; mutable std::mutex mtx_; // to protect allocations_ mutable std::unordered_map allocations_; }; #ifdef PADDLE_WITH_HIP static void StreamCallbackFunc(gpuStream_t stream, gpuError_t status, void* user_data) #endif #ifdef PADDLE_WITH_CUDA #if CUDA_VERSION >= 10000 static void CUDART_CB StreamCallbackFunc(void* user_data) #else static void CUDART_CB StreamCallbackFunc(cudaStream_t stream, cudaError_t status, void* user_data) #endif #endif { std::unique_ptr> func( reinterpret_cast*>(user_data)); (*func)(); } } // namespace internal void DnnWorkspaceHandle::RunFuncSync( const std::function& cudnn_func, size_t required_workspace_bytes, bool use_cached_allocation) { bool need_realloc = required_workspace_bytes > WorkspaceSize(); if (need_realloc && !use_cached_allocation) { void* workspace_ptr = nullptr; size_t size = ((required_workspace_bytes + 255) >> 8) << 8; std::lock_guard guard(*mtx_); #ifdef PADDLE_WITH_HIP auto status = hipMalloc(&workspace_ptr, size); #else auto status = cudaMalloc(&workspace_ptr, size); #endif if (status == gpuSuccess) { cudnn_func(workspace_ptr); phi::backends::gpu::GpuStreamSync(stream_); #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS(hipFree(workspace_ptr)); #else PADDLE_ENFORCE_GPU_SUCCESS(cudaFree(workspace_ptr)); #endif return; } } RunFunc(cudnn_func, required_workspace_bytes); if (need_realloc) { // Release the workspace allocated in this running. ResetWorkspace(); } } void DnnWorkspaceHandle::ResetWorkspace() { allocation_ = nullptr; } void DnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) { if (required_workspace_bytes <= WorkspaceSize()) return; // reset allocation first before re-allocate to save memory allocation_.reset(); allocation_ = allocator_->Allocate(required_workspace_bytes); } struct GPUContext::Impl { void Init() { owned_ = true; backends::gpu::GPUDeviceGuard guard(place_.device); phi::InitGpuProperties(place_, &compute_capability_, &runtime_version_, &driver_version_, &multi_process_, &max_threads_per_mp_, &max_threads_per_block_, &max_grid_dim_size_); stream_ = new CUDAStream(place_); InitEigenDevice(); InitDnnWorkspace(); } void PartialInitWithoutAllocator() { owned_ = true; stream_owned_ = true; backends::gpu::GPUDeviceGuard guard(place_.device); phi::InitGpuProperties(place_, &compute_capability_, &runtime_version_, &driver_version_, &multi_process_, &max_threads_per_mp_, &max_threads_per_block_, &max_grid_dim_size_); stream_ = new CUDAStream(place_); } void PartialInitWithAllocator() { owned_ = true; stream_owned_ = true; backends::gpu::GPUDeviceGuard guard(place_.device); InitDnnWorkspace(); } explicit Impl(const GPUPlace& place) : place_(place) {} ~Impl() { backends::gpu::GPUDeviceGuard guard(place_.device); if (owned_) { DestoryInternalWorkspace(); DestoryInternalEigenDevice(); phi::DestroySparseHandle(sparse_handle_); phi::DestroySolverHandle(solver_handle_); phi::DestroyDnnHandle(dnn_handle_); #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) if (nccl_comm_) { // NOTE(liyurui): It is not recommend calling CUDA runtime API // in destructor. Since we can not ensure the release order of // static object, calling ncclCommDestroy in static object destructor // is a undefined behavior, CUDA driver may be already unloaded // from process. // If you really need to release the resource of nccl_comm, // try to get the nccl_comm out and use ncclCommDestroy outside. } #endif phi::DestroyBlasHandle(blas_handle_); phi::DestroyBlasHandle(blas_tensor_core_handle_); phi::DestroyBlasHandle(blas_tf32_tensor_core_handle_); phi::DestroyBlasLtHandle(blaslt_handle_); } if (stream_owned_ && stream_) { delete stream_; } } const Place& GetPlace() const { return place_; } bool IsTensorCoreAvailable() const { return blas_tensor_core_handle_ != nullptr; } void InitDnnWorkspace() { PD_CHECK(allocator_ != nullptr, "the device allocator for gpu context is nullptr."); workspace_ = new DnnWorkspaceHandle(allocator_, stream()); } void DestoryInternalWorkspace() { if (owned_ && workspace_ != nullptr) { delete workspace_; workspace_ = nullptr; } } // TODO(wilber): The return type is a pointer, to be modified later. // DnnWorkspaceHandle* GetDnnWorkspace() { // PD_CHECK(workspace_ != nullptr, "the gpu cudnn workspace is nullptr."); // return workspace_; // } DnnWorkspaceHandle GetDnnWorkspace() { PD_CHECK(allocator_ != nullptr, "the device allocator for gpu context is nullptr."); return DnnWorkspaceHandle(allocator_, stream()); } void SetStream(gpuStream_t stream) { if (stream_ == nullptr) { auto s = Stream(reinterpret_cast(stream)); stream_ = new CUDAStream(place_, s); stream_owned_ = true; } stream_->set_raw_stream(stream); } void SetCUDAStream(CUDAStream* stream, bool clear = true) { if (clear && stream_owned_ && stream_) { delete stream_; } stream_owned_ = false; stream_ = stream; // TODO(phi): reset related handles? } gpuStream_t stream() const { auto s = stream_->raw_stream(); PD_CHECK(s != nullptr, "the gpu stream is nullptr."); return s; } CUDAStream* cuda_stream() const { PD_CHECK(stream_ != nullptr, "the gpu stream is nullptr."); return stream_; } void InitEigenDevice() { PD_CHECK(allocator_ != nullptr, "the allocator for eigen device is nullptr."); eigen_stream_.reset(new internal::EigenGpuStreamDevice()); eigen_stream_->Reinitialize(stream(), allocator_, place_); eigen_device_ = new Eigen::GpuDevice(eigen_stream_.get()); } void DestoryInternalEigenDevice() { if (owned_ && eigen_device_ != nullptr) { delete eigen_device_; eigen_device_ = nullptr; } } void SetEigenDevice(Eigen::GpuDevice* device) { eigen_device_ = device; } void SetEigenDevice(std::function&& creator) { eigen_device_creator_ = std::move(creator); } Eigen::GpuDevice* eigen_device() { std::call_once(flag_eigen_device_, [&]() { if (!eigen_device_) { if (!eigen_device_creator_) InitEigenDevice(); else eigen_device_ = eigen_device_creator_(); } }); PD_CHECK(eigen_device_ != nullptr, "the gpu eigen_device is nullptr."); return eigen_device_; } blasHandle_t GetBlasHandle() { std::call_once(flag_blas_, [&]() { if (!blas_handle_) { if (!blas_handle_creator_) { phi::InitBlasHandle(&blas_handle_, stream()); } else { blas_handle_ = blas_handle_creator_(); } } #ifdef PADDLE_WITH_CUDA #if CUDA_VERSION >= 9000 if (!blas_tensor_core_handle_) { if (!blas_tensor_core_handle_creator_) { phi::InitBlasHandle(&blas_tensor_core_handle_, stream()); } else { blas_tensor_core_handle_ = blas_tensor_core_handle_creator_(); } PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode( blas_tensor_core_handle_, CUBLAS_TENSOR_OP_MATH)); } #endif #if CUDA_VERSION >= 11000 if (!blas_tf32_tensor_core_handle_) { if (!blas_tf32_tensor_core_handle_creator_) { phi::InitBlasHandle(&blas_tf32_tensor_core_handle_, stream()); } else { blas_tf32_tensor_core_handle_ = blas_tf32_tensor_core_handle_creator_(); } PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode( blas_tf32_tensor_core_handle_, CUBLAS_TF32_TENSOR_OP_MATH)); } #endif #endif }); PD_CHECK(blas_handle_ != nullptr, "the gpu blas handle is nullptr."); return blas_handle_; } void SetBlasHandle(blasHandle_t blas) { blas_handle_ = blas; } void SetBlasHandle(std::function&& handle_creator) { blas_handle_creator_ = std::move(handle_creator); } void SetBlasTensorCoreHandle(blasHandle_t handle) { blas_tensor_core_handle_ = handle; } void SetBlasTensorCoreHandle(std::function&& handle_creator) { blas_tensor_core_handle_creator_ = std::move(handle_creator); } void SetBlasTF32Handle(blasHandle_t handle) { blas_tf32_tensor_core_handle_ = handle; } void SetBlasTF32Handle(std::function&& handle_creator) { blas_tf32_tensor_core_handle_creator_ = std::move(handle_creator); } void SetBlasLtHandle(blasLtHandle_t blaslt) { blaslt_handle_ = blaslt; } void SetBlasLtHandle(std::function&& handle_creator) { blaslt_handle_creator_ = std::move(handle_creator); } blasLtHandle_t GetBlasLtHandle() { std::call_once(flag_blaslt_, [&]() { if (!blaslt_handle_) { if (!blaslt_handle_creator_) phi::InitBlasLtHandle(&blaslt_handle_); else blaslt_handle_ = blaslt_handle_creator_(); } }); PD_CHECK(blaslt_handle_ != nullptr, "the gpu blasLt handle is nullptr."); return blaslt_handle_; } dnnHandle_t GetDnnHandle() { std::call_once(flag_dnn_, [&]() { if (!dnn_handle_) { if (!dnn_handle_creator_) { phi::InitDnnHandle(&dnn_handle_, stream(), place_); } else { dnn_handle_ = dnn_handle_creator_(); } } }); PD_CHECK(dnn_handle_ != nullptr, "the gpu dnn handle is nullptr."); return dnn_handle_; } void DestroyInternalDnnHandle() { #ifdef PADDLE_WITH_HIP if (owned_ && dnn_handle_ != nullptr) { PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::miopenDestroy(dnn_handle_)); dnn_handle_ = nullptr; } #else if (owned_ && dnn_handle_ != nullptr) { PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cudnnDestroy(dnn_handle_)); dnn_handle_ = nullptr; } #endif // PADDLE_WITH_HIP } void SetDnnHandle(dnnHandle_t handle) { dnn_handle_ = handle; } void SetDnnHandle(std::function&& handle_creator) { dnn_handle_creator_ = std::move(handle_creator); } solverHandle_t GetSolverHandle() { std::call_once(flag_slover_, [&]() { if (!solver_handle_) { if (!solver_handle_creator_) { phi::InitSolverHandle(&solver_handle_, stream()); } else { solver_handle_ = solver_handle_creator_(); } } }); PD_CHECK(solver_handle_ != nullptr, "the gpu solver handle is nullptr."); return solver_handle_; } void SetSolverHandle(solverHandle_t handle) { solver_handle_ = handle; } void SetSolverHandle(std::function&& handle_creator) { solver_handle_creator_ = std::move(handle_creator); } sparseHandle_t GetSparseHandle() { std::call_once(flag_sparse_, [&]() { if (!sparse_handle_) { if (!sparse_handle_creator_) { phi::InitSparseHandle(&sparse_handle_, stream()); } else { sparse_handle_ = sparse_handle_creator_(); } } }); PD_CHECK(sparse_handle_ != nullptr, "the gpu sparse handle is nullptr."); return sparse_handle_; } void SetSparseHandle(sparseHandle_t handle) { sparse_handle_ = handle; } void SetSparseHandle(std::function&& handle_creator) { sparse_handle_creator_ = std::move(handle_creator); } void Wait() const { #ifdef PADDLE_WITH_HIP hipError_t e_sync = hipSuccess; #if !defined(_WIN32) e_sync = hipStreamSynchronize(stream()); #else while (e_sync = hipStreamQuery(stream())) { if (e_sync == hipErrorNotReady) continue; break; } #endif // !defined(_WIN32) #else // PADDLE_WITH_HIP cudaError_t e_sync = cudaSuccess; #if !defined(_WIN32) e_sync = cudaStreamSynchronize(stream()); #else while (e_sync = cudaStreamQuery(stream())) { if (e_sync == cudaErrorNotReady) continue; break; } #endif // !defined(_WIN32) #endif // PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS(e_sync); } void WaitEvent(gpuEvent_t ev) const { #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS(hipStreamWaitEvent(stream(), ev, 0)); #else PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamWaitEvent(stream(), ev, 0)); #endif } ncclComm_t GetNcclComm() const { #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) // PD_CHECK(nccl_comm_ != nullptr, "the gpu nccl_comm is nullptr."); return nccl_comm_; #endif return nullptr; } void SetNcclComm(ncclComm_t comm) { #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) nccl_comm_ = comm; #endif } inline void CublasCall(const std::function& callback) { std::call_once(flag_cublas_, [&]() { if (!blas_handle_) { if (!blas_handle_creator_) { phi::InitBlasHandle(&blas_handle_, stream()); } else { blas_handle_ = blas_handle_creator_(); } } #ifdef PADDLE_WITH_CUDA #if CUDA_VERSION >= 9000 if (!blas_tensor_core_handle_) { if (!blas_tensor_core_handle_creator_) { phi::InitBlasHandle(&blas_tensor_core_handle_, stream()); } else { blas_tensor_core_handle_ = blas_tensor_core_handle_creator_(); } PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode( blas_tensor_core_handle_, CUBLAS_TENSOR_OP_MATH)); } #endif #if CUDA_VERSION >= 11000 if (!blas_tf32_tensor_core_handle_) { if (!blas_tf32_tensor_core_handle_creator_) { phi::InitBlasHandle(&blas_tf32_tensor_core_handle_, stream()); } else { blas_tf32_tensor_core_handle_ = blas_tf32_tensor_core_handle_creator_(); } PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode( blas_tf32_tensor_core_handle_, CUBLAS_TF32_TENSOR_OP_MATH)); } #endif #endif }); if (blas_tf32_tensor_core_handle_ != nullptr) { std::lock_guard guard(blas_tf32_mtx_); callback(blas_tf32_tensor_core_handle_); } else { std::lock_guard guard(blas_mtx_); callback(blas_handle_); } } inline void TensorCoreCublasCallIfAvailable( const std::function& callback) { std::call_once(flag_tensorcore_cublas_, [&]() { if (!blas_handle_) { if (!blas_handle_creator_) { phi::InitBlasHandle(&blas_handle_, stream()); } else { blas_handle_ = blas_handle_creator_(); } } #ifdef PADDLE_WITH_CUDA #if CUDA_VERSION >= 9000 if (!blas_tensor_core_handle_) { if (!blas_tensor_core_handle_creator_) { phi::InitBlasHandle(&blas_tensor_core_handle_, stream()); } else { blas_tensor_core_handle_ = blas_tensor_core_handle_creator_(); } PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode( blas_tensor_core_handle_, CUBLAS_TENSOR_OP_MATH)); } #endif #if CUDA_VERSION >= 11000 if (!blas_tf32_tensor_core_handle_) { if (!blas_tf32_tensor_core_handle_creator_) { phi::InitBlasHandle(&blas_tf32_tensor_core_handle_, stream()); } else { blas_tf32_tensor_core_handle_ = blas_tf32_tensor_core_handle_creator_(); } PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode( blas_tf32_tensor_core_handle_, CUBLAS_TF32_TENSOR_OP_MATH)); } #endif #endif }); if (blas_tensor_core_handle_ != nullptr) { std::lock_guard guard(blas_tensor_core_mtx_); callback(blas_tensor_core_handle_); } else { std::lock_guard guard(blas_mtx_); callback(blas_handle_); } } inline void CusparseCall( const std::function& callback) { std::call_once(flag_sparse_, [&]() { if (!sparse_handle_) { if (!sparse_handle_creator_) { phi::InitSparseHandle(&sparse_handle_, stream()); } else { sparse_handle_ = sparse_handle_creator_(); } } }); std::lock_guard guard(sparse_mtx_); callback(sparse_handle_); } void RecordEvent(gpuEvent_t ev, const std::function& callback) const { callback(); RecordEvent(ev); } void RecordEvent(gpuEvent_t ev) const { #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS(hipEventRecord(ev, stream())); #else PADDLE_ENFORCE_GPU_SUCCESS(cudaEventRecord(ev, stream())); #endif } void AddStreamCallback(const std::function& callback) const { // NOTE(zhiqiu): better use threadpool here, otherwise "std::async" may // launch too many threads and result in thread oversubscription. auto* callback_func = new std::function(std::move(callback)); auto* func = new std::function([this, callback_func] { std::lock_guard lock(stream_call_back_mtx_); VLOG(4) << "Stream callback"; last_future_ = std::async(std::launch::async, [callback_func]() { std::unique_ptr> releaser(callback_func); (*callback_func)(); }); }); #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS( hipStreamAddCallback(stream(), internal::StreamCallbackFunc, func, 0)); #endif #ifdef PADDLE_WITH_CUDA #if CUDA_VERSION >= 10000 PADDLE_ENFORCE_GPU_SUCCESS( cudaLaunchHostFunc(stream(), internal::StreamCallbackFunc, func)); #else PADDLE_ENFORCE_GPU_SUCCESS( cudaStreamAddCallback(stream(), internal::StreamCallbackFunc, func, 0)); #endif #endif } void WaitStreamCallback() const { #if defined(PADDLE_WITH_HIP) || defined(PADDLE_WITH_CUDA) phi::backends::gpu::GpuStreamSync(stream()); #endif { std::lock_guard lock(stream_call_back_mtx_); if (last_future_.valid()) { last_future_.wait(); } } } bool HasDnnAttr(const std::string& attr_name) const { return dnn_attrs_.count(attr_name) != 0UL; } const Attribute& GetDnnAttr(const std::string& attr_name) const { auto iter = dnn_attrs_.find(attr_name); PADDLE_ENFORCE_NE( iter, dnn_attrs_.end(), phi::errors::NotFound("Attribute `%s` is not found in OneDNNContext.")); return iter->second; } void SetDnnAttr(const std::string& attr_name, Attribute attr) { dnn_attrs_[attr_name] = attr; } void ClearDnnAttr() { dnn_attrs_.clear(); } // use one flag for all handles? // they should be accessed consistently bool owned_{false}; bool stream_owned_{false}; Place place_; int compute_capability_; int runtime_version_; int driver_version_; int multi_process_; int max_threads_per_mp_; int max_threads_per_block_; std::array max_grid_dim_size_; CUDAStream* stream_{nullptr}; Eigen::GpuDevice* eigen_device_{nullptr}; std::function eigen_device_creator_{nullptr}; blasHandle_t blas_handle_{nullptr}; std::function blas_handle_creator_{nullptr}; blasHandle_t blas_tensor_core_handle_{nullptr}; std::function blas_tensor_core_handle_creator_{nullptr}; blasHandle_t blas_tf32_tensor_core_handle_{nullptr}; std::function blas_tf32_tensor_core_handle_creator_{nullptr}; blasLtHandle_t blaslt_handle_{nullptr}; std::function blaslt_handle_creator_{nullptr}; dnnHandle_t dnn_handle_{nullptr}; std::function dnn_handle_creator_{nullptr}; solverHandle_t solver_handle_{nullptr}; std::function solver_handle_creator_{nullptr}; sparseHandle_t sparse_handle_{nullptr}; std::function sparse_handle_creator_{nullptr}; DnnWorkspaceHandle* workspace_{nullptr}; std::once_flag flag_sparse_; std::once_flag flag_blas_; std::once_flag flag_blaslt_; std::once_flag flag_dnn_; std::once_flag flag_slover_; std::once_flag flag_cublas_; std::once_flag flag_tensorcore_cublas_; std::once_flag flag_eigen_device_; #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) // NCCL communicator (single process version) for NCCL collective operations. // NCCL collective operations provides fast collectives over multiple GPUs // both within and across nodes. // But, this collectives is used for collectives over multiple GPUs within // nodes. // NOTE: Distributed communicator, distributed framework manages its // resources. ncclComm_t nccl_comm_{nullptr}; #endif mutable std::mutex blas_mtx_; mutable std::mutex blas_tensor_core_mtx_; mutable std::mutex blas_tf32_mtx_; mutable std::mutex sparse_mtx_; mutable std::mutex stream_call_back_mtx_; mutable std::future last_future_; Allocator* allocator_{nullptr}; // external resource. // A internal resouce to initinalize eigen_device. std::unique_ptr eigen_stream_{nullptr}; // Holds some attributes only used by the gpudnn kernel calculation // Because DeviceContext is a global singleton, you need to ensure thread // safety, use the thread_local variable static thread_local AttributeMap dnn_attrs_; }; thread_local AttributeMap GPUContext::Impl::dnn_attrs_ = {}; GPUContext::GPUContext(GPUContext&&) = default; GPUContext& GPUContext::operator=(GPUContext&&) = default; GPUContext::GPUContext(const GPUPlace& place, bool init) : DeviceContext(), impl_(std::make_unique(place)) { if (init) { impl_->PartialInitWithoutAllocator(); } } GPUContext::~GPUContext() = default; const Place& GPUContext::GetPlace() const { return impl_->GetPlace(); } gpuStream_t GPUContext::stream() const { return impl_->stream(); } CUDAStream* GPUContext::cuda_stream() const { return impl_->cuda_stream(); } dnnHandle_t GPUContext::cudnn_handle() const { return impl_->GetDnnHandle(); } blasHandle_t GPUContext::cublas_handle() const { return impl_->GetBlasHandle(); } blasLtHandle_t GPUContext::cublaslt_handle() const { return impl_->GetBlasLtHandle(); } solverHandle_t GPUContext::cusolver_dn_handle() const { return impl_->GetSolverHandle(); } sparseHandle_t GPUContext::cusparse_handle() const { return impl_->GetSparseHandle(); } void GPUContext::Wait() const { impl_->Wait(); } void GPUContext::WaitEvent(gpuEvent_t ev) const { impl_->WaitEvent(ev); } bool GPUContext::tensor_core_available() const { return impl_->IsTensorCoreAvailable(); } int GPUContext::GetComputeCapability() const { return impl_->compute_capability_; } int GPUContext::GetMaxPhysicalThreadCount() const { return impl_->multi_process_ * impl_->max_threads_per_mp_; } int GPUContext::GetSMCount() const { return impl_->multi_process_; } int GPUContext::GetMaxThreadsPerBlock() const { return impl_->max_threads_per_block_; } std::array GPUContext::GetCUDAMaxGridDimSize() const { return impl_->max_grid_dim_size_; } Eigen::GpuDevice* GPUContext::eigen_device() const { return impl_->eigen_device(); } DnnWorkspaceHandle GPUContext::cudnn_workspace_handle() const { return impl_->GetDnnWorkspace(); } void GPUContext::CublasCall( const std::function& callback) const { impl_->CublasCall(callback); } void GPUContext::TensorCoreCublasCallIfAvailable( const std::function& callback) const { impl_->TensorCoreCublasCallIfAvailable(callback); } void GPUContext::CusparseCall( const std::function& callback) const { impl_->CusparseCall(callback); } void GPUContext::RecordEvent(gpuEvent_t ev, const std::function& callback) const { impl_->RecordEvent(ev, callback); } void GPUContext::RecordEvent(gpuEvent_t ev) const { impl_->RecordEvent(ev); } void GPUContext::AddStreamCallback( const std::function& callback) const { impl_->AddStreamCallback(callback); } void GPUContext::WaitStreamCallback() const { impl_->WaitStreamCallback(); } ncclComm_t GPUContext::nccl_comm() const { return impl_->GetNcclComm(); } void GPUContext::set_nccl_comm(ncclComm_t comm) { impl_->SetNcclComm(comm); } void GPUContext::Init() { impl_->allocator_ = const_cast(&this->GetAllocator()); impl_->Init(); } void GPUContext::SetStream(gpuStream_t stream) { impl_->allocator_ = const_cast(&this->GetAllocator()); impl_->SetStream(stream); } void GPUContext::SetCUDAStream(CUDAStream* stream, bool clear) { impl_->allocator_ = const_cast(&this->GetAllocator()); impl_->SetCUDAStream(stream, clear); } void GPUContext::SetEigenDevice(Eigen::GpuDevice* device) { impl_->SetEigenDevice(device); } void GPUContext::SetEigenDevice(std::function&& creator) { impl_->SetEigenDevice(std::move(creator)); } void GPUContext::SetBlasHandle(blasHandle_t blas) { impl_->SetBlasHandle(blas); } void GPUContext::SetBlasHandle(std::function&& func) { impl_->SetBlasHandle(std::move(func)); } void GPUContext::SetBlasTensorCoreHandle(blasHandle_t handle) { impl_->SetBlasTensorCoreHandle(handle); } void GPUContext::SetBlasTensorCoreHandle(std::function&& func) { impl_->SetBlasTensorCoreHandle(std::move(func)); } void GPUContext::SetBlasTF32Handle(blasHandle_t handle) { impl_->SetBlasTF32Handle(handle); } void GPUContext::SetBlasTF32Handle(std::function&& func) { impl_->SetBlasTF32Handle(std::move(func)); } void GPUContext::SetBlasLtHandle(blasLtHandle_t blaslt) { impl_->SetBlasLtHandle(blaslt); } void GPUContext::SetBlasLtHandle(std::function&& func) { impl_->SetBlasLtHandle(std::move(func)); } void GPUContext::SetDnnHandle(dnnHandle_t handle) { impl_->SetDnnHandle(handle); } void GPUContext::SetDnnHandle(std::function&& func) { impl_->SetDnnHandle(std::move(func)); } void GPUContext::SetSolverHandle(solverHandle_t handle) { impl_->SetSolverHandle(handle); } void GPUContext::SetSolverHandle(std::function&& func) { impl_->SetSolverHandle(std::move(func)); } void GPUContext::SetSparseHandle(sparseHandle_t handle) { impl_->SetSparseHandle(handle); } void GPUContext::SetSparseHandle(std::function&& func) { impl_->SetSparseHandle(std::move(func)); } void GPUContext::SetDnnWorkspaceHandle(DnnWorkspaceHandle* handle) { impl_->workspace_ = handle; } void GPUContext::PartialInitWithoutAllocator() { impl_->PartialInitWithoutAllocator(); } void GPUContext::PartialInitWithAllocator() { impl_->allocator_ = const_cast(&this->GetAllocator()); impl_->PartialInitWithAllocator(); } void GPUContext::SetComputeCapability(int val) { impl_->compute_capability_ = val; } void GPUContext::SetMaxThreadsPerMultiProcessor(int val) { impl_->max_threads_per_mp_ = val; } void GPUContext::SetMultiProcessors(int val) { impl_->multi_process_ = val; } void GPUContext::SetMaxThreadsPerBlock(int val) { impl_->max_threads_per_block_ = val; } void GPUContext::SetMaxGridDimSize(const std::array& val) { impl_->max_grid_dim_size_ = val; } void GPUContext::SetDriverVersion(int val) { impl_->driver_version_ = val; } void GPUContext::SetRuntimeVersion(int val) { impl_->runtime_version_ = val; } bool GPUContext::HasDnnAttr(const std::string& attr_name) const { return impl_->HasDnnAttr(attr_name); } const Attribute& GPUContext::GetDnnAttr(const std::string& attr_name) const { return impl_->GetDnnAttr(attr_name); } void GPUContext::SetDnnAttr(const std::string& attr_name, Attribute attr) { return impl_->SetDnnAttr(attr_name, std::move(attr)); } void GPUContext::ClearDnnAttr() { return impl_->ClearDnnAttr(); } } // namespace phi