基本使用概念¶
PaddlePaddle是源于百度的一个深度学习平台。PaddlePaddle为深度学习研究人员提供了丰富的API,可以轻松地完成神经网络配置,模型训练等任务。 这里将介绍PaddlePaddle的基本使用概念,并且展示了如何利用PaddlePaddle来解决一个经典的线性回归问题。 在使用该文档之前,请参考 安装文档 完成PaddlePaddle的安装。
配置网络¶
加载PaddlePaddle¶
在进行网络配置之前,首先需要加载相应的Python库,并进行初始化操作。
import paddle.v2 as paddle
import numpy as np
paddle.init(use_gpu=False)
搭建神经网络¶
搭建神经网络就像使用积木搭建宝塔一样。在PaddlePaddle中,layer是我们的积木,而神经网络是我们要搭建的宝塔。我们使用不同的layer进行组合,来搭建神经网络。 宝塔的底端需要坚实的基座来支撑,同样,神经网络也需要一些特定的layer作为输入接口,来完成网络的训练。
例如,我们可以定义如下layer来描述神经网络的输入:
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(2))
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
其中x表示输入数据是一个维度为2的稠密向量,y表示输入数据是一个维度为1的稠密向量。
PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和三种序列模式。
四种数据类型:
- dense_vector:稠密的浮点数向量。
- sparse_binary_vector:稀疏的01向量,即大部分值为0,但有值的地方必须为1。
- sparse_float_vector:稀疏的向量,即大部分值为0,但有值的部分可以是任何浮点数。
- integer:整数标签。
三种序列模式:
- SequenceType.NO_SEQUENCE:不是一条序列
- SequenceType.SEQUENCE:是一条时间序列
- SequenceType.SUB_SEQUENCE: 是一条时间序列,且序列的每一个元素还是一个时间序列。
不同的数据类型和序列模式返回的格式不同,列表如下:
NO_SEQUENCE | SEQUENCE | SUB_SEQUENCE | |
---|---|---|---|
dense_vector | [f, f, ...] | [[f, ...], [f, ...], ...] | [[[f, ...], ...], [[f, ...], ...],...] |
sparse_binary_vector | [i, i, ...] | [[i, ...], [i, ...], ...] | [[[i, ...], ...], [[i, ...], ...],...] |
sparse_float_vector | [(i,f), (i,f), ...] | [[(i,f), ...], [(i,f), ...], ...] | [[[(i,f), ...], ...], [[(i,f), ...], ...],...] |
integer_value | i | [i, i, ...] | [[i, ...], [i, ...], ...] |
其中,f代表一个浮点数,i代表一个整数。
注意:对sparse_binary_vector和sparse_float_vector,PaddlePaddle存的是有值位置的索引。例如,
- 对一个5维非序列的稀疏01向量
[0, 1, 1, 0, 0]
,类型是sparse_binary_vector,返回的是[1, 2]
。 - 对一个5维非序列的稀疏浮点向量
[0, 0.5, 0.7, 0, 0]
,类型是sparse_float_vector,返回的是[(1, 0.5), (2, 0.7)]
。
在定义输入layer之后,我们可以使用其他layer进行组合。在组合时,需要指定layer的输入来源。
例如,我们可以定义如下的layer组合:
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
cost = paddle.layer.square_error_cost(input=y_predict, label=y)
其中,x与y为之前描述的输入层;而y_predict是接收x作为输入,接上一个全连接层;cost接收y_predict与y作为输入,接上平方误差层。
最后一层cost中记录了神经网络的所有拓扑结构,通过组合不同的layer,我们即可完成神经网络的搭建。
训练模型¶
在完成神经网络的搭建之后,我们首先需要根据神经网络结构来创建所需要优化的parameters,并创建optimizer。 之后,我们可以创建trainer来对网络进行训练。
parameters = paddle.parameters.create(cost)
optimizer = paddle.optimizer.Momentum(momentum=0)
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer)
其中,trainer接收三个参数,包括神经网络拓扑结构、神经网络参数以及迭代方程。
在搭建神经网络的过程中,我们仅仅对神经网络的输入进行了描述。而trainer需要读取训练数据进行训练,PaddlePaddle中通过reader来加载数据。
# define training dataset reader
def train_reader():
train_x = np.array([[1, 1], [1, 2], [3, 4], [5, 2]])
train_y = np.array([[-2], [-3], [-7], [-7]])
def reader():
for i in xrange(train_y.shape[0]):
yield train_x[i], train_y[i]
return reader
最终我们可以调用trainer的train方法启动训练:
# define feeding map
feeding = {'x': 0, 'y': 1}
# event_handler to print training info
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 1 == 0:
print "Pass %d, Batch %d, Cost %f" % (
event.pass_id, event.batch_id, event.cost)
# training
trainer.train(
reader=paddle.batch(train_reader(), batch_size=1),
feeding=feeding,
event_handler=event_handler,
num_passes=100)
关于PaddlePaddle的更多使用方法请参考 进阶指南。
线性回归完整示例¶
下面给出在三维空间中使用线性回归拟合一条直线的例子:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2 as paddle
import numpy as np
# init paddle
paddle.init(use_gpu=False)
# network config
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(2))
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
cost = paddle.layer.square_error_cost(input=y_predict, label=y)
# create parameters
parameters = paddle.parameters.create(cost)
# create optimizer
optimizer = paddle.optimizer.Momentum(momentum=0)
# create trainer
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer)
# event_handler to print training info
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 1 == 0:
print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id,
event.cost)
# product model every 10 pass
if isinstance(event, paddle.event.EndPass):
if event.pass_id % 10 == 0:
with open('params_pass_%d.tar' % event.pass_id, 'w') as f:
trainer.save_parameter_to_tar(f)
# define training dataset reader
def train_reader():
train_x = np.array([[1, 1], [1, 2], [3, 4], [5, 2]])
train_y = np.array([[-2], [-3], [-7], [-7]])
def reader():
for i in xrange(train_y.shape[0]):
yield train_x[i], train_y[i]
return reader
# define feeding map
feeding = {'x': 0, 'y': 1}
# training
trainer.train(
reader=paddle.batch(
train_reader(), batch_size=1),
feeding=feeding,
event_handler=event_handler,
num_passes=100)
|
使用以上训练好的模型进行预测,取其中一个模型params_pass_90.tar,输入需要预测的向量组,然后打印输出:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2 as paddle
import numpy as np
paddle.init(use_gpu=False)
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(2))
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
# loading the model which generated by training
with open('params_pass_90.tar', 'r') as f:
parameters = paddle.parameters.Parameters.from_tar(f)
# Input multiple sets of data,Output the infer result in a array.
i = [[[1, 2]], [[3, 4]], [[5, 6]]]
print paddle.infer(output_layer=y_predict, parameters=parameters, input=i)
# Will print:
# [[ -3.24491572]
# [ -6.94668722]
# [-10.64845848]]
|
有关线性回归的实际应用,可以参考PaddlePaddle book的 第一章节。