// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once /*! \file paddle_api.h */ /*! \mainpage Paddle Inference APIs * \section intro_sec Introduction * The Paddle inference library aims to offer an high performance inference SDK * for Paddle users. */ #include #include #include #include #include #include "paddle_infer_declare.h" // NOLINT /*! \namespace paddle */ namespace paddle { /// \brief Paddle data type. enum PaddleDType { FLOAT32, INT64, INT32, UINT8, // TODO(Superjomn) support more data types if needed. }; /// \brief Memory manager for PaddleTensor. /// /// The PaddleBuf holds a buffer for data input or output. The memory can be /// allocated by user or by PaddleBuf itself, but in any case, the PaddleBuf /// should be reused for better performance. /// /// For user allocated memory, the following API can be used: /// - PaddleBuf(void* data, size_t length) to set an external memory by /// specifying the memory address and length. /// - Reset(void* data, size_t length) to reset the PaddleBuf with an external /// memory. /// ATTENTION, for user allocated memory, deallocation should be done by users /// externally after the program finished. The PaddleBuf won't do any allocation /// or deallocation. /// /// To have the PaddleBuf allocate and manage the memory: /// - PaddleBuf(size_t length) will allocate a memory of size `length`. /// - Resize(size_t length) resize the memory to no less than `length`, /// ATTENTION /// if the allocated memory is larger than `length`, nothing will done. /// /// Usage: /// /// Let PaddleBuf manage the memory internally. /// \code{cpp} /// const int num_elements = 128; /// PaddleBuf buf(num_elements/// sizeof(float)); /// \endcode /// /// Or /// \code{cpp} /// PaddleBuf buf; /// buf.Resize(num_elements/// sizeof(float)); /// \endcode /// Works the exactly the same. /// /// One can also make the `PaddleBuf` use the external memory. /// \code{cpp} /// PaddleBuf buf; /// void* external_memory = new float[num_elements]; /// buf.Reset(external_memory, num_elements*sizeof(float)); /// ... /// delete[] external_memory; // manage the memory lifetime outside. /// \endcode /// class PD_INFER_DECL PaddleBuf { public: /// /// \brief PaddleBuf allocate memory internally, and manage it. /// /// \param[in] length The length of data. /// explicit PaddleBuf(size_t length) : data_(new char[length]), length_(length), memory_owned_(true) {} /// /// \brief Set external memory, the PaddleBuf won't manage it. /// /// \param[in] data The start address of the external memory. /// \param[in] length The length of data. /// PaddleBuf(void* data, size_t length) : data_(data), length_(length), memory_owned_{false} {} /// /// \brief Copy only available when memory is managed externally. /// /// \param[in] other another `PaddleBuf` /// explicit PaddleBuf(const PaddleBuf& other); /// /// \brief Resize the memory. /// /// \param[in] length The length of data. /// void Resize(size_t length); /// /// \brief Reset to external memory, with address and length set. /// /// \param[in] data The start address of the external memory. /// \param[in] length The length of data. /// void Reset(void* data, size_t length); /// /// \brief Tell whether the buffer is empty. /// bool empty() const { return length_ == 0; } /// /// \brief Get the data's memory address. /// void* data() const { return data_; } /// /// \brief Get the memory length. /// size_t length() const { return length_; } ~PaddleBuf() { Free(); } PaddleBuf& operator=(const PaddleBuf&); PaddleBuf& operator=(PaddleBuf&&); PaddleBuf() = default; PaddleBuf(PaddleBuf&& other); private: void Free(); void* data_{nullptr}; ///< pointer to the data memory. size_t length_{0}; ///< number of memory bytes. bool memory_owned_{true}; }; /// /// \brief Basic input and output data structure for PaddlePredictor. /// struct PD_INFER_DECL PaddleTensor { PaddleTensor() = default; std::string name; ///< variable name. std::vector shape; PaddleBuf data; ///< blob of data. PaddleDType dtype; std::vector> lod; ///< Tensor+LoD equals LoDTensor }; enum class PaddlePlace { kUNK = -1, kCPU, kGPU }; /// \brief Represents an n-dimensional array of values. /// The ZeroCopyTensor is used to store the input or output of the network. /// Zero copy means that the tensor supports direct copy of host or device data /// to device, /// eliminating additional CPU copy. ZeroCopyTensor is only used in the /// AnalysisPredictor. /// It is obtained through PaddlePredictor::GetinputTensor() /// and PaddlePredictor::GetOutputTensor() interface. class PD_INFER_DECL ZeroCopyTensor { public: /// \brief Reset the shape of the tensor. /// Generally it's only used for the input tensor. /// Reshape must be called before calling mutable_data() or copy_from_cpu() /// \param shape The shape to set. void Reshape(const std::vector& shape); /// \brief Get the memory pointer in CPU or GPU with specific data type. /// Please Reshape the tensor first before call this. /// It's usually used to get input data pointer. /// \param place The place of the tensor. template T* mutable_data(PaddlePlace place); /// \brief Get the memory pointer directly. /// It's usually used to get the output data pointer. /// \param[out] place To get the device type of the tensor. /// \param[out] size To get the data size of the tensor. /// \return The tensor data buffer pointer. template T* data(PaddlePlace* place, int* size) const; /// \brief Copy the host memory to tensor data. /// It's usually used to set the input tensor data. /// \param data The pointer of the data, from which the tensor will copy. template void copy_from_cpu(const T* data); /// \brief Copy the tensor data to the host memory. /// It's usually used to get the output tensor data. /// \param[out] data The tensor will copy the data to the address. template void copy_to_cpu(T* data); /// \brief Return the shape of the Tensor. std::vector shape() const; /// \brief Set lod info of the tensor. /// More about LOD can be seen here: /// https://www.paddlepaddle.org.cn/documentation/docs/zh/beginners_guide/basic_concept/lod_tensor.html#lodtensor /// \param x the lod info. void SetLoD(const std::vector>& x); /// \brief Return the lod info of the tensor. std::vector> lod() const; /// \brief Return the name of the tensor. const std::string& name() const { return name_; } void SetPlace(PaddlePlace place, int device = -1) { place_ = place; device_ = device; } /// \brief Return the data type of the tensor. /// It's usually used to get the output tensor data type. /// \return The data type of the tensor. PaddleDType type() const; protected: explicit ZeroCopyTensor(void* scope) : scope_{scope} {} void SetName(const std::string& name) { name_ = name; } void* FindTensor() const; private: std::string name_; bool input_or_output_; friend class AnalysisPredictor; void* scope_{nullptr}; // The corresponding tensor pointer inside Paddle workspace is cached for // performance. mutable void* tensor_{nullptr}; PaddlePlace place_; PaddleDType dtype_; int device_; }; /// \brief A Predictor for executing inference on a model. /// Base class for AnalysisPredictor and NativePaddlePredictor. class PD_INFER_DECL PaddlePredictor { public: struct Config; PaddlePredictor() = default; PaddlePredictor(const PaddlePredictor&) = delete; PaddlePredictor& operator=(const PaddlePredictor&) = delete; /// \brief This interface takes input and runs the network. /// There are redundant copies of data between hosts in this operation, /// so it is more recommended to use the zecopyrun interface /// \param[in] inputs An list of PaddleTensor as the input to the network. /// \param[out] output_data Pointer to the tensor list, which holds the output /// paddletensor /// \param[in] batch_size This setting has been discarded and can be ignored. /// \return Whether the run is successful virtual bool Run(const std::vector& inputs, std::vector* output_data, int batch_size = -1) = 0; /// \brief Used to get the name of the network input. /// Be inherited by AnalysisPredictor, Only used in ZeroCopy scenarios. /// \return Input tensor names. virtual std::vector GetInputNames() { return {}; } /// \brief Get the input shape of the model. /// \return A map contains all the input names and shape defined in the model. virtual std::map> GetInputTensorShape() { return {}; } /// \brief Used to get the name of the network output. /// Be inherited by AnalysisPredictor, Only used in ZeroCopy scenarios. /// \return Output tensor names. virtual std::vector GetOutputNames() { return {}; } /// \brief Get the input ZeroCopyTensor by name. /// Be inherited by AnalysisPredictor, Only used in ZeroCopy scenarios. /// The name is obtained from the GetInputNames() interface. /// \param name The input tensor name. /// \return Return the corresponding input ZeroCopyTensor. virtual std::unique_ptr GetInputTensor( const std::string& name) { return nullptr; } /// \brief Get the output ZeroCopyTensor by name. /// Be inherited by AnalysisPredictor, Only used in ZeroCopy scenarios. /// The name is obtained from the GetOutputNames() interface. /// \param name The output tensor name. /// \return Return the corresponding output ZeroCopyTensor. virtual std::unique_ptr GetOutputTensor( const std::string& name) { return nullptr; } /// \brief Run the network with zero-copied inputs and outputs. /// Be inherited by AnalysisPredictor and only used in ZeroCopy scenarios. /// This will save the IO copy for transfering inputs and outputs to predictor /// workspace /// and get some performance improvement. /// To use it, one should call the AnalysisConfig.SwitchUseFeedFetchOp(true) /// and then use the `GetInputTensor` and `GetOutputTensor` /// to directly write or read the input/output tensors. /// \return Whether the run is successful virtual bool ZeroCopyRun() { return false; } /// \brief Clone an existing predictor /// When using clone, the same network will be created, /// and the parameters between them are shared. /// \return unique_ptr which contains the pointer of predictor virtual std::unique_ptr Clone() = 0; /// \brief Destroy the Predictor. virtual ~PaddlePredictor() = default; virtual std::string GetSerializedProgram() const { assert(false); // Force raise error. return "NotImplemented"; } /// \brief Base class for NativeConfig and AnalysisConfig. struct Config { std::string model_dir; /*!< path to the model directory. */ }; }; /// /// \brief configuration manager for `NativePredictor`. /// /// `AnalysisConfig` manages configurations of `NativePredictor`. /// During inference procedure, there are many parameters(model/params path, /// place of inference, etc.) /// struct PD_INFER_DECL NativeConfig : public PaddlePredictor::Config { /// GPU related fields. bool use_gpu{false}; int device{0}; float fraction_of_gpu_memory{ -1.f}; ///< Change to a float in (0,1] if needed. std::string prog_file; std::string param_file; ///< Specify the exact path of program and parameter files. bool specify_input_name{false}; ///< Specify the variable's name of each ///< input if input tensors don't follow the ///< `feeds` and `fetches` of the phase ///< `save_inference_model`. /// Set and get the number of cpu math library threads. void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads) { cpu_math_library_num_threads_ = cpu_math_library_num_threads; } int cpu_math_library_num_threads() const { return cpu_math_library_num_threads_; } protected: int cpu_math_library_num_threads_{1}; ///< number of cpu math library (such ///< as MKL, OpenBlas) threads for each ///< instance. }; /// /// \brief A factory to help create different predictors. /// /// Usage: /// /// \code{.cpp} /// NativeConfig config; /// ... // change the configs. /// auto native_predictor = CreatePaddlePredictor(config); /// \endcode /// /// FOR EXTENSION DEVELOPER: /// Different predictors are designated by config type. Similar configs can be /// merged, but there shouldn't be a huge config containing different fields for /// more than one kind of predictors. //// template std::unique_ptr CreatePaddlePredictor(const ConfigT& config); struct AnalysisConfig; struct NativeConfig; struct DemoConfig; template <> PD_INFER_DECL std::unique_ptr CreatePaddlePredictor(const AnalysisConfig& config); template <> PD_INFER_DECL std::unique_ptr CreatePaddlePredictor(const NativeConfig& config); template <> PD_INFER_DECL std::unique_ptr CreatePaddlePredictor(const DemoConfig& config); /// NOTE The following APIs are too trivial, we will discard it in the following /// versions. /// enum class PaddleEngineKind { kNative = 0, ///< Use the native Fluid facility. kAutoMixedTensorRT, ///< Automatically mix Fluid with TensorRT. kAnalysis, ///< More optimization. }; template std::unique_ptr CreatePaddlePredictor(const ConfigT& config); template <> PD_INFER_DECL std::unique_ptr CreatePaddlePredictor< NativeConfig, PaddleEngineKind::kNative>(const NativeConfig& config); template <> PD_INFER_DECL std::unique_ptr CreatePaddlePredictor< AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig& config); PD_INFER_DECL int PaddleDtypeSize(PaddleDType dtype); PD_INFER_DECL std::string get_version(); #if defined(_WIN32) && defined(PADDLE_ON_INFERENCE) PD_INFER_DECL std::string UpdateDllFlag(const char* name, const char* value); #endif } // namespace paddle