/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/phi/core/hostdevice.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace paddle { namespace operators { template using EigenTensor = framework::EigenTensor; using Tensor = phi::DenseTensor; using DataLayout = phi::DataLayout; inline std::vector get_new_shape( const std::vector& list_new_shape_tensor) { // get tensor from std::vector vec_new_shape; for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) { auto tensor = list_new_shape_tensor[i]; PADDLE_ENFORCE_EQ(tensor->dims(), phi::make_ddim({1}), platform::errors::InvalidArgument( "The shape of dimension tensor should be [1]," "but received d%.", tensor->dims())); if (platform::is_gpu_place(tensor->place()) || platform::is_mlu_place(tensor->place())) { phi::DenseTensor temp; paddle::framework::TensorCopySync(*tensor, platform::CPUPlace(), &temp); vec_new_shape.push_back(static_cast(*temp.data())); } else { vec_new_shape.push_back(static_cast(*tensor->data())); } } return vec_new_shape; } template inline std::vector get_new_data_from_tensor( const phi::DenseTensor* new_data_tensor) { std::vector vec_new_data; auto* new_data = new_data_tensor->data(); phi::DenseTensor cpu_starts_tensor; if (platform::is_gpu_place(new_data_tensor->place()) || platform::is_mlu_place(new_data_tensor->place())) { paddle::framework::TensorCopySync( *new_data_tensor, platform::CPUPlace(), &cpu_starts_tensor); new_data = cpu_starts_tensor.data(); } vec_new_data = std::vector(new_data, new_data + new_data_tensor->numel()); return vec_new_data; } inline void ExtractNCDWH(const framework::DDim& dims, const DataLayout& data_layout, int* N, int* C, int* D, int* H, int* W) { *N = dims[0]; if (dims.size() == 3) { *C = data_layout == DataLayout::kNCHW ? dims[1] : dims[2]; *D = 1; *H = 1; *W = data_layout == DataLayout::kNCHW ? dims[2] : dims[1]; } else if (dims.size() == 4) { *C = data_layout == DataLayout::kNCHW ? dims[1] : dims[3]; *D = 1; *H = data_layout == DataLayout::kNCHW ? dims[2] : dims[1]; *W = data_layout == DataLayout::kNCHW ? dims[3] : dims[2]; } else { *C = data_layout == DataLayout::kNCHW ? dims[1] : dims[4]; *D = data_layout == DataLayout::kNCHW ? dims[2] : dims[1]; *H = data_layout == DataLayout::kNCHW ? dims[3] : dims[2]; *W = data_layout == DataLayout::kNCHW ? dims[4] : dims[3]; } } template static void NearestNeighborInterpolate(const phi::DenseTensor& input, phi::DenseTensor* output, const float ratio_h, const float ratio_w, const int n, const int c, const int out_h, const int out_w, const bool align_corners, const DataLayout& data_layout) { auto input_t = EigenTensor::From(input); auto output_t = EigenTensor::From(*output); for (int k = 0; k < out_h; k++) { // loop for images int in_k = (align_corners) ? static_cast(ratio_h * k + 0.5) : static_cast(ratio_h * k); for (int l = 0; l < out_w; l++) { int in_l = (align_corners) ? static_cast(ratio_w * l + 0.5) : static_cast(ratio_w * l); for (int i = 0; i < n; i++) { // loop for batches for (int j = 0; j < c; j++) { // loop for channels if (data_layout == DataLayout::kNCHW) { output_t(i, j, k, l) = input_t(i, j, in_k, in_l); } else { output_t(i, k, l, j) = input_t(i, in_k, in_l, j); } } } } } } template static void LinearInterpolation(const phi::DenseTensor& input, phi::DenseTensor* output, const float ratio_w, const int in_w, const int n, const int c, const int out_w, const bool align_corners, const bool align_mode, const DataLayout data_layout) { auto input_t = EigenTensor::From(input); auto output_t = EigenTensor::From(*output); bool align_flag = (align_mode == 0 && !align_corners); std::vector vx_w, vx_e; std::vector vd_w, vd_e; vx_w.reserve(out_w); vx_e.reserve(out_w); vd_w.reserve(out_w); vd_e.reserve(out_w); #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (int l = 0; l < out_w; l++) { int x_w = align_flag ? static_cast(ratio_w * (l + 0.5) - 0.5) : static_cast(ratio_w * l); x_w = (x_w > 0) ? x_w : 0; // w int x_e = (x_w < (in_w - 1)) ? (x_w + 1) : x_w; // w_id float idx_src_x = ratio_w * (l + 0.5) - 0.5; idx_src_x = (idx_src_x > 0) ? idx_src_x : 0; float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w; // w1lambda float d_e = 1.f - d_w; // w2lambda { vx_w[l] = x_w; vx_e[l] = x_e; vd_w[l] = d_w; vd_e[l] = d_e; } } #ifdef PADDLE_WITH_MKLML #pragma omp parallel for collapse(3) #endif for (int i = 0; i < n; i++) { // loop for batches for (int j = 0; j < c; j++) { // loop for channels for (int l = 0; l < out_w; l++) { // linear interpolation T out_t; if (data_layout == DataLayout::kNCHW) { out_t = input_t(i, j, vx_w[l]) * vd_e[l] + input_t(i, j, vx_e[l]) * vd_w[l]; output_t(i, j, l) = out_t; } else { out_t = input_t(i, vx_w[l], j) * vd_e[l] + input_t(i, vx_e[l], j) * vd_w[l]; output_t(i, l, j) = out_t; } } } } } template static void LinearInterpolationGrad(const phi::DenseTensor& output_grad, phi::DenseTensor* input_grad, const float ratio_w, const int in_w, const int n, const int c, const int out_w, const bool align_corners, const int align_mode, const DataLayout data_layout) { auto input_grad_t = EigenTensor::From(*input_grad); auto output_grad_t = EigenTensor::From(output_grad); bool align_flag = (align_mode == 0 && !align_corners); for (int l = 0; l < out_w; l++) { int x_w = align_flag ? static_cast(ratio_w * (l + 0.5) - 0.5) : static_cast(ratio_w * l); x_w = (x_w > 0) ? x_w : 0; // w int x_e = (x_w < (in_w - 1)) ? (x_w + 1) : x_w; // w_id float idx_src_x = ratio_w * (l + 0.5) - 0.5; idx_src_x = (idx_src_x > 0) ? idx_src_x : 0; float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w; // w1lambda float d_e = 1.f - d_w; // w2lambda for (int i = 0; i < n; i++) { // loop for batches for (int j = 0; j < c; j++) { // loop for channels // linear interpolation grad if (data_layout == DataLayout::kNCHW) { const T grad = output_grad_t(i, j, l); input_grad_t(i, j, x_w) += static_cast(grad * d_e); input_grad_t(i, j, x_e) += static_cast(grad * d_w); } else { const T grad = output_grad_t(i, l, j); input_grad_t(i, x_w, j) += static_cast(grad * d_e); input_grad_t(i, x_e, j) += static_cast(grad * d_w); } } } } } template static void BilinearInterpolation(const phi::DenseTensor& input, phi::DenseTensor* output, const float ratio_h, const float ratio_w, const int in_h, const int in_w, const int n, const int c, const int out_h, const int out_w, const bool align_corners, const bool align_mode, const DataLayout data_layout) { auto input_t = EigenTensor::From(input); auto output_t = EigenTensor::From(*output); bool align_flag = (align_mode == 0 && !align_corners); std::vector vy_n, vy_s; std::vector vd_n, vd_s; vy_n.reserve(out_h); vy_s.reserve(out_h); vd_n.reserve(out_h); vd_s.reserve(out_h); #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (int k = 0; k < out_h; k++) { int y_n = align_flag ? static_cast(ratio_h * (k + 0.5) - 0.5) : static_cast(ratio_h * k); y_n = (y_n > 0) ? y_n : 0; int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1); float idx_src_y = ratio_h * (k + 0.5) - 0.5; idx_src_y = (idx_src_y > 0) ? idx_src_y : 0; float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n; float d_s = 1.f - d_n; { vy_n[k] = y_n; vy_s[k] = y_s; vd_n[k] = d_n; vd_s[k] = d_s; } } std::vector vx_w, vx_e; std::vector vd_w, vd_e; vx_w.reserve(out_w); vx_e.reserve(out_w); vd_w.reserve(out_w); vd_e.reserve(out_w); #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (int l = 0; l < out_w; l++) { int x_w = (align_mode == 0 && !align_corners) ? static_cast(ratio_w * (l + 0.5) - 0.5) : static_cast(ratio_w * l); x_w = (x_w > 0) ? x_w : 0; int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1); float idx_src_x = ratio_w * (l + 0.5) - 0.5; idx_src_x = (idx_src_x > 0) ? idx_src_x : 0; float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w; float d_e = 1.f - d_w; { vx_w[l] = x_w; vx_e[l] = x_e; vd_w[l] = d_w; vd_e[l] = d_e; } } #ifdef PADDLE_WITH_MKLML #pragma omp parallel for collapse(4) #endif for (int i = 0; i < n; i++) { // loop for batches for (int j = 0; j < c; j++) { // loop for channels for (int k = 0; k < out_h; k++) { // loop for images for (int l = 0; l < out_w; l++) { // bilinear interpolation T out_t; if (data_layout == DataLayout::kNCHW) { out_t = input_t(i, j, vy_n[k], vx_w[l]) * vd_s[k] * vd_e[l] + input_t(i, j, vy_s[k], vx_w[l]) * vd_n[k] * vd_e[l] + input_t(i, j, vy_n[k], vx_e[l]) * vd_s[k] * vd_w[l] + input_t(i, j, vy_s[k], vx_e[l]) * vd_n[k] * vd_w[l]; output_t(i, j, k, l) = out_t; } else { out_t = input_t(i, vy_n[k], vx_w[l], j) * vd_s[k] * vd_e[l] + input_t(i, vy_s[k], vx_w[l], j) * vd_n[k] * vd_e[l] + input_t(i, vy_n[k], vx_e[l], j) * vd_s[k] * vd_w[l] + input_t(i, vy_s[k], vx_e[l], j) * vd_n[k] * vd_w[l]; output_t(i, k, l, j) = out_t; } } } } } } template static void TrilinearInterpolation(const phi::DenseTensor& input, phi::DenseTensor* output, const float ratio_d, const float ratio_h, const float ratio_w, const int in_d, const int in_h, const int in_w, const int n, const int c, const int out_d, const int out_h, const int out_w, const bool align_corners, const bool align_mode, const DataLayout& data_layout) { auto input_t = EigenTensor::From(input); auto output_t = EigenTensor::From(*output); bool align_flag = (align_mode == 0 && !align_corners); std::vector vt_f, vt_b; std::vector vd_f, vd_b; vt_f.reserve(out_d); vt_b.reserve(out_d); vd_f.reserve(out_d); vd_b.reserve(out_d); #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (int j = 0; j < out_d; j++) { int t_f = align_flag ? static_cast(ratio_d * (j + 0.5) - 0.5) : static_cast(ratio_d * j); t_f = (t_f > 0) ? t_f : 0; int t_b = (t_f + 1) < (in_d - 1) ? (t_f + 1) : (in_d - 1); float idx_src_t = ratio_d * (j + 0.5) - 0.5; idx_src_t = (idx_src_t > 0) ? idx_src_t : 0; float d_f = align_flag ? idx_src_t - t_f : ratio_d * j - t_f; float d_b = 1.f - d_f; { vt_f[j] = t_f; vt_b[j] = t_b; vd_f[j] = d_f; vd_b[j] = d_b; } } std::vector vy_n, vy_s; std::vector vd_n, vd_s; vy_n.reserve(out_h); vy_s.reserve(out_h); vd_n.reserve(out_h); vd_s.reserve(out_h); #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (int k = 0; k < out_h; k++) { int y_n = align_flag ? static_cast(ratio_h * (k + 0.5) - 0.5) : static_cast(ratio_h * k); y_n = (y_n > 0) ? y_n : 0; int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1); float idx_src_y = ratio_h * (k + 0.5) - 0.5; idx_src_y = (idx_src_y > 0) ? idx_src_y : 0; float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n; float d_s = 1.f - d_n; { vy_n[k] = y_n; vy_s[k] = y_s; vd_n[k] = d_n; vd_s[k] = d_s; } } std::vector vx_w, vx_e; std::vector vd_w, vd_e; vx_w.reserve(out_w); vx_e.reserve(out_w); vd_w.reserve(out_w); vd_e.reserve(out_w); #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (int l = 0; l < out_w; l++) { int x_w = (align_mode == 0 && !align_corners) ? static_cast(ratio_w * (l + 0.5) - 0.5) : static_cast(ratio_w * l); x_w = (x_w > 0) ? x_w : 0; int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1); float idx_src_x = ratio_w * (l + 0.5) - 0.5; idx_src_x = (idx_src_x > 0) ? idx_src_x : 0; float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w; float d_e = 1.f - d_w; { vx_w[l] = x_w; vx_e[l] = x_e; vd_w[l] = d_w; vd_e[l] = d_e; } } #ifdef PADDLE_WITH_MKLML #pragma omp parallel for collapse(5) #endif for (int b = 0; b < n; b++) { // loop for batches for (int i = 0; i < c; i++) { // loop for channels for (int j = 0; j < out_d; j++) { // loop for D, H, W for (int k = 0; k < out_h; k++) { for (int l = 0; l < out_w; l++) { // trilinear interpolation if (data_layout == DataLayout::kNCHW) { T out_t = input_t(b, i, vt_f[j], vy_n[k], vx_w[l]) * vd_b[j] * vd_s[k] * vd_e[l] + input_t(b, i, vt_f[j], vy_n[k], vx_e[l]) * vd_b[j] * vd_s[k] * vd_w[l] + input_t(b, i, vt_f[j], vy_s[k], vx_w[l]) * vd_b[j] * vd_n[k] * vd_e[l] + input_t(b, i, vt_f[j], vy_s[k], vx_e[l]) * vd_b[j] * vd_n[k] * vd_w[l] + input_t(b, i, vt_b[j], vy_n[k], vx_w[l]) * vd_f[j] * vd_s[k] * vd_e[l] + input_t(b, i, vt_b[j], vy_n[k], vx_e[l]) * vd_f[j] * vd_s[k] * vd_w[l] + input_t(b, i, vt_b[j], vy_s[k], vx_w[l]) * vd_f[j] * vd_n[k] * vd_e[l] + input_t(b, i, vt_b[j], vy_s[k], vx_e[l]) * vd_f[j] * vd_n[k] * vd_w[l]; output_t(b, i, j, k, l) = out_t; } else { T out_t = input_t(b, vt_f[j], vy_n[k], vx_w[l], i) * vd_b[j] * vd_s[k] * vd_e[l] + input_t(b, vt_f[j], vy_n[k], vx_e[l], i) * vd_b[j] * vd_s[k] * vd_w[l] + input_t(b, vt_f[j], vy_s[k], vx_w[l], i) * vd_b[j] * vd_n[k] * vd_e[l] + input_t(b, vt_f[j], vy_s[k], vx_e[l], i) * vd_b[j] * vd_n[k] * vd_w[l] + input_t(b, vt_b[j], vy_n[k], vx_w[l], i) * vd_f[j] * vd_s[k] * vd_e[l] + input_t(b, vt_b[j], vy_n[k], vx_e[l], i) * vd_f[j] * vd_s[k] * vd_w[l] + input_t(b, vt_b[j], vy_s[k], vx_w[l], i) * vd_f[j] * vd_n[k] * vd_e[l] + input_t(b, vt_b[j], vy_s[k], vx_e[l], i) * vd_f[j] * vd_n[k] * vd_w[l]; output_t(b, j, k, l, i) = out_t; } } } } } } } template HOSTDEVICE inline T cubic_convolution1(T x, T A) { return ((A + 2) * x - (A + 3)) * x * x + 1; } template HOSTDEVICE inline T cubic_convolution2(T x, T A) { return ((A * x - 5 * A) * x + 8 * A) * x - 4 * A; } template HOSTDEVICE inline void get_cubic_upsample_coefficients(T coeffs[4], T t) { T A = static_cast(-0.75); T x1 = t; coeffs[0] = cubic_convolution2(x1 + 1.0, A); coeffs[1] = cubic_convolution1(x1, A); // opposite coefficients T x2 = 1.0 - t; coeffs[2] = cubic_convolution1(x2, A); coeffs[3] = cubic_convolution2(x2 + 1.0, A); } template static inline T cubic_interp(T x0, T x1, T x2, T x3, T t) { T coeffs[4]; get_cubic_upsample_coefficients(coeffs, t); return x0 * coeffs[0] + x1 * coeffs[1] + x2 * coeffs[2] + x3 * coeffs[3]; } template static void BicubicInterpolation(const phi::DenseTensor& input, phi::DenseTensor* output, const float ratio_h, const float ratio_w, const int in_h, const int in_w, const int n, const int c, const int out_h, const int out_w, const bool align_corners, const DataLayout data_layout) { auto input_t = EigenTensor::From(input); auto output_t = EigenTensor::From(*output); for (int k = 0; k < out_h; k++) { // loop for images T y_n = align_corners ? static_cast(ratio_h * k) : static_cast(ratio_h * (k + 0.5) - 0.5); int input_y = floorf(y_n); const T y_t = y_n - input_y; for (int l = 0; l < out_w; l++) { T x_n = align_corners ? static_cast(ratio_w * l) : static_cast(ratio_w * (l + 0.5) - 0.5); int input_x = floorf(x_n); const T x_t = x_n - input_x; for (int i = 0; i < n; i++) { // loop for batches for (int j = 0; j < c; j++) { // loop for channels T coefficients[4]; // interp 4 times in x direction for (int ii = 0; ii < 4; ii++) { int access_y = std::max(std::min(input_y - 1 + ii, in_h - 1), static_cast(0)); int access_x_0 = std::max(std::min(input_x - 1, in_w - 1), static_cast(0)); int access_x_1 = std::max(std::min(input_x + 0, in_w - 1), static_cast(0)); int access_x_2 = std::max(std::min(input_x + 1, in_w - 1), static_cast(0)); int access_x_3 = std::max(std::min(input_x + 2, in_w - 1), static_cast(0)); if (data_layout == DataLayout::kNCHW) { coefficients[ii] = cubic_interp(input_t(i, j, access_y, access_x_0), input_t(i, j, access_y, access_x_1), input_t(i, j, access_y, access_x_2), input_t(i, j, access_y, access_x_3), x_t); } else { coefficients[ii] = cubic_interp(input_t(i, access_y, access_x_0, j), input_t(i, access_y, access_x_1, j), input_t(i, access_y, access_x_2, j), input_t(i, access_y, access_x_3, j), x_t); } } // interp y direction if (data_layout == DataLayout::kNCHW) { output_t(i, j, k, l) = cubic_interp(coefficients[0], coefficients[1], coefficients[2], coefficients[3], y_t); } else { output_t(i, k, l, j) = cubic_interp(coefficients[0], coefficients[1], coefficients[2], coefficients[3], y_t); } } } } } } template static void NearestNeighborInterpolateGrad(const phi::DenseTensor& output_grad, phi::DenseTensor* input_grad, const float ratio_h, const float ratio_w, const int n, const int c, const int out_h, const int out_w, const bool align_corners, const DataLayout data_layout) { auto input_grad_t = EigenTensor::From(*input_grad); auto output_grad_t = EigenTensor::From(output_grad); for (int k = 0; k < out_h; k++) { // loop for images int in_k = (align_corners) ? static_cast(ratio_h * k + 0.5) : static_cast(ratio_h * k); for (int l = 0; l < out_w; l++) { int in_l = (align_corners) ? static_cast(ratio_w * l + 0.5) : static_cast(ratio_w * l); for (int i = 0; i < n; i++) { // loop for batches for (int j = 0; j < c; j++) { // loop for channels if (data_layout == DataLayout::kNCHW) { input_grad_t(i, j, in_k, in_l) += output_grad_t(i, j, k, l); } else { input_grad_t(i, in_k, in_l, j) += output_grad_t(i, k, l, j); } } } } } } template static void BilinearInterpolationGrad(const phi::DenseTensor& output_grad, phi::DenseTensor* input_grad, const float ratio_h, const float ratio_w, const int in_h, const int in_w, const int n, const int c, const int out_h, const int out_w, const bool align_corners, const int align_mode, const DataLayout data_layout) { auto input_grad_t = EigenTensor::From(*input_grad); auto output_grad_t = EigenTensor::From(output_grad); bool align_flag = (align_mode == 0 && !align_corners); for (int k = 0; k < out_h; k++) { // loop for images int y_n = align_flag ? static_cast(ratio_h * (k + 0.5) - 0.5) : static_cast(ratio_h * k); y_n = (y_n > 0) ? y_n : 0; int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1); float idx_src_y = ratio_h * (k + 0.5) - 0.5; idx_src_y = (idx_src_y > 0) ? idx_src_y : 0; float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n; float d_s = 1.f - d_n; for (int l = 0; l < out_w; l++) { int x_w = align_flag ? static_cast(ratio_w * (l + 0.5) - 0.5) : static_cast(ratio_w * l); x_w = (x_w > 0) ? x_w : 0; int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1); float idx_src_x = ratio_w * (l + 0.5) - 0.5; idx_src_x = (idx_src_x > 0) ? idx_src_x : 0; float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w; float d_e = 1.f - d_w; for (int i = 0; i < n; i++) { // loop for batches for (int j = 0; j < c; j++) { // loop for channels // bilinear interpolation grad if (data_layout == DataLayout::kNCHW) { const T grad = output_grad_t(i, j, k, l); input_grad_t(i, j, y_n, x_w) += static_cast(grad * d_s * d_e); input_grad_t(i, j, y_s, x_w) += static_cast(grad * d_n * d_e); input_grad_t(i, j, y_n, x_e) += static_cast(grad * d_s * d_w); input_grad_t(i, j, y_s, x_e) += static_cast(grad * d_n * d_w); } else { const T grad = output_grad_t(i, k, l, j); input_grad_t(i, y_n, x_w, j) += static_cast(grad * d_s * d_e); input_grad_t(i, y_s, x_w, j) += static_cast(grad * d_n * d_e); input_grad_t(i, y_n, x_e, j) += static_cast(grad * d_s * d_w); input_grad_t(i, y_s, x_e, j) += static_cast(grad * d_n * d_w); } } } } } } template static void TrilinearInterpolationGrad(const phi::DenseTensor& output_grad, phi::DenseTensor* input_grad, const float ratio_d, const float ratio_h, const float ratio_w, const int in_d, const int in_h, const int in_w, const int n, const int c, const int out_d, const int out_h, const int out_w, const bool align_corners, const int align_mode, const DataLayout data_layout) { auto input_grad_t = EigenTensor::From(*input_grad); auto output_grad_t = EigenTensor::From(output_grad); bool align_flag = (align_mode == 0 && !align_corners); for (int j = 0; j < out_d; j++) { // loop for D int t_f = align_flag ? static_cast(ratio_d * (j + 0.5) - 0.5) : static_cast(ratio_d * j); t_f = (t_f > 0) ? t_f : 0; int t_b = (t_f + 1) < (in_d - 1) ? (t_f + 1) : (in_d - 1); float idx_src_t = ratio_d * (j + 0.5) - 0.5; idx_src_t = (idx_src_t > 0) ? idx_src_t : 0; float d_f = align_flag ? idx_src_t - t_f : ratio_d * j - t_f; float d_b = 1.f - d_f; for (int k = 0; k < out_h; k++) { // loop for H int y_n = align_flag ? static_cast(ratio_h * (k + 0.5) - 0.5) : static_cast(ratio_h * k); y_n = (y_n > 0) ? y_n : 0; int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1); float idx_src_y = ratio_h * (k + 0.5) - 0.5; idx_src_y = (idx_src_y > 0) ? idx_src_y : 0; float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n; float d_s = 1.f - d_n; for (int l = 0; l < out_w; l++) { // loop for W int x_w = align_flag ? static_cast(ratio_w * (l + 0.5) - 0.5) : static_cast(ratio_w * l); x_w = (x_w > 0) ? x_w : 0; int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1); float idx_src_x = ratio_w * (l + 0.5) - 0.5; idx_src_x = (idx_src_x > 0) ? idx_src_x : 0; float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w; float d_e = 1.f - d_w; for (int b = 0; b < n; b++) { // loop for batches for (int i = 0; i < c; i++) { // loop for channels // trilinear interpolation grad if (data_layout == DataLayout::kNCHW) { const T grad = output_grad_t(b, i, j, k, l); input_grad_t(b, i, t_f, y_n, x_w) += static_cast(grad * d_b * d_s * d_e); input_grad_t(b, i, t_f, y_n, x_e) += static_cast(grad * d_b * d_s * d_w); input_grad_t(b, i, t_f, y_s, x_w) += static_cast(grad * d_b * d_n * d_e); input_grad_t(b, i, t_f, y_s, x_e) += static_cast(grad * d_b * d_n * d_w); input_grad_t(b, i, t_b, y_n, x_w) += static_cast(grad * d_f * d_s * d_e); input_grad_t(b, i, t_b, y_n, x_e) += static_cast(grad * d_f * d_s * d_w); input_grad_t(b, i, t_b, y_s, x_w) += static_cast(grad * d_f * d_n * d_e); input_grad_t(b, i, t_b, y_s, x_e) += static_cast(grad * d_f * d_n * d_w); } else { const T grad = output_grad_t(b, j, k, l, i); input_grad_t(b, t_f, y_n, x_w, i) += static_cast(grad * d_b * d_s * d_e); input_grad_t(b, t_f, y_n, x_e, i) += static_cast(grad * d_b * d_s * d_w); input_grad_t(b, t_f, y_s, x_w, i) += static_cast(grad * d_b * d_n * d_e); input_grad_t(b, t_f, y_s, x_e, i) += static_cast(grad * d_b * d_n * d_w); input_grad_t(b, t_b, y_n, x_w, i) += static_cast(grad * d_f * d_s * d_e); input_grad_t(b, t_b, y_n, x_e, i) += static_cast(grad * d_f * d_s * d_w); input_grad_t(b, t_b, y_s, x_w, i) += static_cast(grad * d_f * d_n * d_e); input_grad_t(b, t_b, y_s, x_e, i) += static_cast(grad * d_f * d_n * d_w); } } } } } } } template static void BicubicInterpolationGrad(const phi::DenseTensor& output_grad, phi::DenseTensor* input_grad, const float ratio_h, const float ratio_w, const int in_h, const int in_w, const int n, const int c, const int out_h, const int out_w, const bool align_corners, const DataLayout data_layout) { auto input_grad_t = EigenTensor::From(*input_grad); auto output_grad_t = EigenTensor::From(output_grad); for (int k = 0; k < out_h; k++) { // loop for images T y_n = align_corners ? static_cast(ratio_h * k) : static_cast(ratio_h * (k + 0.5) - 0.5); int input_y = floorf(y_n); T y_t = y_n - input_y; for (int l = 0; l < out_w; l++) { T x_n = align_corners ? static_cast(ratio_w * l) : static_cast(ratio_w * (l + 0.5) - 0.5); int input_x = floorf(x_n); T x_t = x_n - input_x; T x_coeffs[4]; T y_coeffs[4]; get_cubic_upsample_coefficients(x_coeffs, x_t); get_cubic_upsample_coefficients(y_coeffs, y_t); for (int i = 0; i < n; i++) { // loop for batches for (int j = 0; j < c; j++) { // loop for channels // bicubic interpolation grad for (int ii = 0; ii < 4; ii++) { for (int jj = 0; jj < 4; jj++) { int access_x = std::max(std::min(input_x - 1 + ii, in_w - 1), static_cast(0)); int access_y = std::max(std::min(input_y - 1 + jj, in_h - 1), static_cast(0)); if (data_layout == DataLayout::kNCHW) { T grad = output_grad_t(i, j, k, l); input_grad_t(i, j, access_y, access_x) += grad * y_coeffs[jj] * x_coeffs[ii]; } else { T grad = output_grad_t(i, k, l, j); input_grad_t(i, access_y, access_x, j) += grad * y_coeffs[jj] * x_coeffs[ii]; } } } } } } } } template static void Interpolate1DCPUFwd(const framework::ExecutionContext& ctx, const phi::DenseTensor& input, phi::DenseTensor* output) { const std::string data_layout_str = ctx.Attr("data_layout"); const DataLayout data_layout = phi::StringToDataLayout(data_layout_str); int n, c, in_d, in_h, in_w; ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w); auto interp_method = ctx.Attr("interp_method"); bool align_corners = ctx.Attr("align_corners"); int align_mode = ctx.Attr("align_mode"); int out_w = ctx.Attr("out_w"); auto list_new_size_tensor = ctx.MultiInput("SizeTensor"); if (list_new_size_tensor.size() > 0) { // have size tensor auto new_size = get_new_shape(list_new_size_tensor); out_w = new_size[0]; } else { float scale; auto scale_tensor = ctx.Input("Scale"); if (scale_tensor != nullptr) { auto scale_data = get_new_data_from_tensor(scale_tensor); scale = scale_data[0]; } else { scale = ctx.Attr("scale"); } if (scale > 0) { out_w = static_cast(in_w * scale); } auto out_size = ctx.Input("OutSize"); if (out_size != nullptr) { auto out_size_data = get_new_data_from_tensor(out_size); out_w = out_size_data[0]; } } PADDLE_ENFORCE_GT(out_w, 0, platform::errors::InvalidArgument( "out_w in Attr(out_shape) of Op(interpolate) " "should be greater than 0.")); framework::DDim dim_out; if (data_layout == DataLayout::kNCHW) { dim_out = {n, c, out_w}; } else { dim_out = {n, out_w, c}; } output->mutable_data(dim_out, ctx.GetPlace()); if (in_w == out_w) { framework::TensorCopy(input, ctx.GetPlace(), output); return; } float ratio_w = 0.f; if (out_w > 1) { ratio_w = (align_corners) ? static_cast(in_w - 1) / (out_w - 1) : static_cast(in_w) / out_w; } if ("linear" == interp_method) { LinearInterpolation(input, output, ratio_w, in_w, n, c, out_w, align_corners, align_mode, data_layout); } } template static void Interpolate2DCPUFwd(const framework::ExecutionContext& ctx, const phi::DenseTensor& input, phi::DenseTensor* output) { const std::string data_layout_str = ctx.Attr("data_layout"); const DataLayout data_layout = phi::StringToDataLayout(data_layout_str); int n, c, in_d, in_h, in_w; ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w); auto interp_method = ctx.Attr("interp_method"); bool align_corners = ctx.Attr("align_corners"); int align_mode = ctx.Attr("align_mode"); int out_h = ctx.Attr("out_h"); int out_w = ctx.Attr("out_w"); auto list_new_size_tensor = ctx.MultiInput("SizeTensor"); if (list_new_size_tensor.size() > 0) { // have size tensor auto new_size = get_new_shape(list_new_size_tensor); out_h = new_size[0]; out_w = new_size[1]; } else { float scale; auto scale_tensor = ctx.Input("Scale"); if (scale_tensor != nullptr) { auto scale_data = get_new_data_from_tensor(scale_tensor); scale = scale_data[0]; } else { scale = ctx.Attr("scale"); } if (scale > 0) { out_h = static_cast(in_h * scale); out_w = static_cast(in_w * scale); } auto out_size = ctx.Input("OutSize"); if (out_size != nullptr) { auto out_size_data = get_new_data_from_tensor(out_size); out_h = out_size_data[0]; out_w = out_size_data[1]; } } PADDLE_ENFORCE_GT(out_h, 0, platform::errors::InvalidArgument( "out_h in Attr(out_shape) of Op(interpolate) " "should be greater than 0.")); PADDLE_ENFORCE_GT(out_w, 0, platform::errors::InvalidArgument( "out_w in Attr(out_shape) of Op(interpolate) " "should be greater than 0.")); framework::DDim dim_out; if (data_layout == DataLayout::kNCHW) { dim_out = {n, c, out_h, out_w}; } else { dim_out = {n, out_h, out_w, c}; } output->mutable_data(dim_out, ctx.GetPlace()); if (in_h == out_h && in_w == out_w) { framework::TensorCopy(input, ctx.GetPlace(), output); return; } float ratio_h = 0.f; float ratio_w = 0.f; if (out_h > 1) { ratio_h = (align_corners) ? static_cast(in_h - 1) / (out_h - 1) : static_cast(in_h) / out_h; } if (out_w > 1) { ratio_w = (align_corners) ? static_cast(in_w - 1) / (out_w - 1) : static_cast(in_w) / out_w; } if ("bilinear" == interp_method) { BilinearInterpolation(input, output, ratio_h, ratio_w, in_h, in_w, n, c, out_h, out_w, align_corners, align_mode, data_layout); } else if ("nearest" == interp_method) { NearestNeighborInterpolate(input, output, ratio_h, ratio_w, n, c, out_h, out_w, align_corners, data_layout); } else if ("bicubic" == interp_method) { BicubicInterpolation(input, output, ratio_h, ratio_w, in_h, in_w, n, c, out_h, out_w, align_corners, data_layout); } } template static void Interpolate3DCPUFwd(const framework::ExecutionContext& ctx, const phi::DenseTensor& input, phi::DenseTensor* output) { const std::string data_layout_str = ctx.Attr("data_layout"); const DataLayout data_layout = phi::StringToDataLayout(data_layout_str); int n, c, in_d, in_h, in_w; ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w); auto interp_method = ctx.Attr("interp_method"); bool align_corners = ctx.Attr("align_corners"); int align_mode = ctx.Attr("align_mode"); int out_d = ctx.Attr("out_d"); int out_h = ctx.Attr("out_h"); int out_w = ctx.Attr("out_w"); auto list_new_size_tensor = ctx.MultiInput("SizeTensor"); if (list_new_size_tensor.size() > 0) { // have size tensor auto new_size = get_new_shape(list_new_size_tensor); out_d = new_size[0]; out_h = new_size[1]; out_w = new_size[2]; } else { float scale; auto scale_tensor = ctx.Input("Scale"); if (scale_tensor != nullptr) { auto scale_data = get_new_data_from_tensor(scale_tensor); scale = scale_data[0]; } else { scale = ctx.Attr("scale"); } if (scale > 0) { out_d = static_cast(in_d * scale); out_h = static_cast(in_h * scale); out_w = static_cast(in_w * scale); } auto out_size = ctx.Input("OutSize"); if (out_size != nullptr) { auto out_size_data = get_new_data_from_tensor(out_size); out_d = out_size_data[0]; out_h = out_size_data[1]; out_w = out_size_data[2]; } } PADDLE_ENFORCE_GT(out_d, 0, platform::errors::InvalidArgument( "out_d in Attr(out_shape) of Op(interpolate) " "should be greater than 0.")); PADDLE_ENFORCE_GT(out_h, 0, platform::errors::InvalidArgument( "out_h in Attr(out_shape) of Op(interpolate) " "should be greater than 0.")); PADDLE_ENFORCE_GT(out_w, 0, platform::errors::InvalidArgument( "out_w in Attr(out_shape) of Op(interpolate) " "should be greater than 0.")); framework::DDim dim_out; if (data_layout == DataLayout::kNCHW) { dim_out = {n, c, out_d, out_h, out_w}; } else { dim_out = {n, out_d, out_h, out_w, c}; } output->mutable_data(dim_out, ctx.GetPlace()); if (in_d == out_d && in_h == out_h && in_w == out_w) { framework::TensorCopy(input, ctx.GetPlace(), output); return; } float ratio_d = 0.f; float ratio_h = 0.f; float ratio_w = 0.f; if (out_d > 1) { ratio_d = (align_corners) ? static_cast(in_d - 1) / (out_d - 1) : static_cast(in_d) / out_d; } if (out_h > 1) { ratio_h = (align_corners) ? static_cast(in_h - 1) / (out_h - 1) : static_cast(in_h) / out_h; } if (out_w > 1) { ratio_w = (align_corners) ? static_cast(in_w - 1) / (out_w - 1) : static_cast(in_w) / out_w; } if ("trilinear" == interp_method) { TrilinearInterpolation(input, output, ratio_d, ratio_h, ratio_w, in_d, in_h, in_w, n, c, out_d, out_h, out_w, align_corners, align_mode, data_layout); } } template static void Interpolate1DCPUBwd(const framework::ExecutionContext& ctx, phi::DenseTensor* input_grad, const phi::DenseTensor& output_grad) { auto* input = ctx.Input("X"); const std::string data_layout_str = ctx.Attr("data_layout"); const DataLayout data_layout = phi::StringToDataLayout(data_layout_str); int n, c, in_d, in_h, in_w; ExtractNCDWH(input->dims(), data_layout, &n, &c, &in_d, &in_h, &in_w); auto interp_method = ctx.Attr("interp_method"); bool align_corners = ctx.Attr("align_corners"); int align_mode = ctx.Attr("align_mode"); int out_w = ctx.Attr("out_w"); float scale; auto scale_tensor = ctx.Input("Scale"); if (scale_tensor != nullptr) { auto scale_data = get_new_data_from_tensor(scale_tensor); scale = scale_data[0]; } else { scale = ctx.Attr("scale"); } if (scale > 0) { out_w = static_cast(in_w * scale); } auto out_size = ctx.Input("OutSize"); if (out_size != nullptr) { auto out_size_data = get_new_data_from_tensor(out_size); out_w = out_size_data[0]; } auto list_new_size_tensor = ctx.MultiInput("SizeTensor"); if (list_new_size_tensor.size() > 0) { // have size tensor auto new_size = get_new_shape(list_new_size_tensor); out_w = new_size[0]; } framework::DDim dim_grad; if (data_layout == DataLayout::kNCHW) { dim_grad = {n, c, in_w}; } else { dim_grad = {n, in_w, c}; } input_grad->mutable_data(dim_grad, ctx.GetPlace()); auto& device_ctx = ctx.template device_context(); phi::funcs::SetConstant zero; zero(device_ctx, input_grad, static_cast(0.0)); if (in_w == out_w) { framework::TensorCopy(output_grad, ctx.GetPlace(), input_grad); return; } float ratio_w = 0.f; if (out_w > 1) { ratio_w = (align_corners) ? static_cast(in_w - 1) / (out_w - 1) : static_cast(in_w) / out_w; } if ("linear" == interp_method) { LinearInterpolationGrad(output_grad, input_grad, ratio_w, in_w, n, c, out_w, align_corners, align_mode, data_layout); } } template static void Interpolate2DCPUBwd(const framework::ExecutionContext& ctx, phi::DenseTensor* input_grad, const phi::DenseTensor& output_grad) { auto* input = ctx.Input("X"); const std::string data_layout_str = ctx.Attr("data_layout"); const DataLayout data_layout = phi::StringToDataLayout(data_layout_str); int n, c, in_d, in_h, in_w; ExtractNCDWH(input->dims(), data_layout, &n, &c, &in_d, &in_h, &in_w); auto interp_method = ctx.Attr("interp_method"); bool align_corners = ctx.Attr("align_corners"); int align_mode = ctx.Attr("align_mode"); int out_h = ctx.Attr("out_h"); int out_w = ctx.Attr("out_w"); float scale; auto scale_tensor = ctx.Input("Scale"); if (scale_tensor != nullptr) { auto scale_data = get_new_data_from_tensor(scale_tensor); scale = scale_data[0]; } else { scale = ctx.Attr("scale"); } if (scale > 0) { out_h = static_cast(in_h * scale); out_w = static_cast(in_w * scale); } auto out_size = ctx.Input("OutSize"); if (out_size != nullptr) { auto out_size_data = get_new_data_from_tensor(out_size); out_h = out_size_data[0]; out_w = out_size_data[1]; } auto list_new_size_tensor = ctx.MultiInput("SizeTensor"); if (list_new_size_tensor.size() > 0) { // have size tensor auto new_size = get_new_shape(list_new_size_tensor); out_h = new_size[0]; out_w = new_size[1]; } framework::DDim dim_grad; if (data_layout == DataLayout::kNCHW) { dim_grad = {n, c, in_h, in_w}; } else { dim_grad = {n, in_h, in_w, c}; } input_grad->mutable_data(dim_grad, ctx.GetPlace()); auto& device_ctx = ctx.template device_context(); phi::funcs::SetConstant zero; zero(device_ctx, input_grad, static_cast(0.0)); if (in_h == out_h && in_w == out_w) { framework::TensorCopy(output_grad, ctx.GetPlace(), input_grad); return; } float ratio_h = 0.f; float ratio_w = 0.f; if (out_h > 1) { ratio_h = (align_corners) ? static_cast(in_h - 1) / (out_h - 1) : static_cast(in_h) / out_h; } if (out_w > 1) { ratio_w = (align_corners) ? static_cast(in_w - 1) / (out_w - 1) : static_cast(in_w) / out_w; } if ("bilinear" == interp_method) { BilinearInterpolationGrad(output_grad, input_grad, ratio_h, ratio_w, in_h, in_w, n, c, out_h, out_w, align_corners, align_mode, data_layout); } else if ("nearest" == interp_method) { NearestNeighborInterpolateGrad(output_grad, input_grad, ratio_h, ratio_w, n, c, out_h, out_w, align_corners, data_layout); } else if ("bicubic" == interp_method) { BicubicInterpolationGrad(output_grad, input_grad, ratio_h, ratio_w, in_h, in_w, n, c, out_h, out_w, align_corners, data_layout); } } template static void Interpolate3DCPUBwd(const framework::ExecutionContext& ctx, phi::DenseTensor* input_grad, const Tensor output_grad) { auto* input = ctx.Input("X"); const std::string data_layout_str = ctx.Attr("data_layout"); const DataLayout data_layout = phi::StringToDataLayout(data_layout_str); int n, c, in_d, in_h, in_w; ExtractNCDWH(input->dims(), data_layout, &n, &c, &in_d, &in_h, &in_w); auto interp_method = ctx.Attr("interp_method"); bool align_corners = ctx.Attr("align_corners"); int align_mode = ctx.Attr("align_mode"); int out_d = ctx.Attr("out_d"); int out_h = ctx.Attr("out_h"); int out_w = ctx.Attr("out_w"); float scale; auto scale_tensor = ctx.Input("Scale"); if (scale_tensor != nullptr) { auto scale_data = get_new_data_from_tensor(scale_tensor); scale = scale_data[0]; } else { scale = ctx.Attr("scale"); } if (scale > 0) { out_d = static_cast(in_d * scale); out_h = static_cast(in_h * scale); out_w = static_cast(in_w * scale); } auto out_size = ctx.Input("OutSize"); if (out_size != nullptr) { auto out_size_data = get_new_data_from_tensor(out_size); out_d = out_size_data[0]; out_h = out_size_data[1]; out_w = out_size_data[2]; } auto list_new_size_tensor = ctx.MultiInput("SizeTensor"); if (list_new_size_tensor.size() > 0) { // have size tensor auto new_size = get_new_shape(list_new_size_tensor); out_d = new_size[0]; out_h = new_size[1]; out_w = new_size[2]; } framework::DDim dim_grad; if (data_layout == DataLayout::kNCHW) { dim_grad = {n, c, in_d, in_h, in_w}; } else { dim_grad = {n, in_d, in_h, in_w, c}; } input_grad->mutable_data(dim_grad, ctx.GetPlace()); auto& device_ctx = ctx.template device_context(); phi::funcs::SetConstant zero; zero(device_ctx, input_grad, static_cast(0.0)); if (in_d == out_d && in_h == out_h && in_w == out_w) { framework::TensorCopy(output_grad, ctx.GetPlace(), input_grad); return; } float ratio_d = 0.f; float ratio_h = 0.f; float ratio_w = 0.f; if (out_d > 1) { ratio_d = (align_corners) ? static_cast(in_d - 1) / (out_d - 1) : static_cast(in_d) / out_d; } if (out_h > 1) { ratio_h = (align_corners) ? static_cast(in_h - 1) / (out_h - 1) : static_cast(in_h) / out_h; } if (out_w > 1) { ratio_w = (align_corners) ? static_cast(in_w - 1) / (out_w - 1) : static_cast(in_w) / out_w; } if ("trilinear" == interp_method) { TrilinearInterpolationGrad(output_grad, input_grad, ratio_d, ratio_h, ratio_w, in_d, in_h, in_w, n, c, out_d, out_h, out_w, align_corners, align_mode, data_layout); } } template class InterpolateKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); auto input_dims = input->dims(); if (input_dims.size() == 3) { // 1D interpolation Interpolate1DCPUFwd(ctx, *input, output); } else if (input_dims.size() == 4) { // 2D interpolation Interpolate2DCPUFwd(ctx, *input, output); } else if (input_dims.size() == 5) { // 3D interpolation Interpolate3DCPUFwd(ctx, *input, output); } } }; template class InterpolateGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input_grad = ctx.Output(framework::GradVarName("X")); auto* output_grad = ctx.Input(framework::GradVarName("Out")); auto output_grad_dims = output_grad->dims(); if (output_grad_dims.size() == 3) { // 1D interpolation grad Interpolate1DCPUBwd(ctx, input_grad, *output_grad); } else if (output_grad_dims.size() == 4) { // 2D interpolation grad Interpolate2DCPUBwd(ctx, input_grad, *output_grad); } else if (output_grad_dims.size() == 5) { // 3D interpolation grad Interpolate3DCPUBwd(ctx, input_grad, *output_grad); } } }; } // namespace operators } // namespace paddle