// Copyright (c) 2022 CINN Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include "paddle/cinn/auto_schedule/auto_schedule.pb.h" #include "paddle/cinn/auto_schedule/search_space/search_state.h" #include "paddle/cinn/ir/schedule_desc.pb.h" namespace cinn { namespace auto_schedule { // Record related data about tuning process of a measure candidate struct TuningRecord { // the unique key to identify a task std::string task_key; // the predicted cost of CostModel float predicted_cost; // unit: us // the ScheduleDesc of this tuning process ir::proto::ScheduleDesc trace; // the cost time of the candidate executed during measure double execution_cost; // unit: us TuningRecord() = default; explicit TuningRecord(const proto::TuningRecord& record) : task_key(record.task_key()), predicted_cost(record.predicted_cost()), trace(record.trace()), execution_cost(record.execution_cost()) {} TuningRecord(const std::string& task_key, const SearchState& state, double execution_cost) : task_key(task_key), predicted_cost(state->predicted_cost), trace(state->ir_schedule.GetTraceDesc().ToProto()), execution_cost(execution_cost) {} // convert to proto object proto::TuningRecord ToProto() const; // a binary compare function that denotes when the left // will be sorted in the front of the right struct Compare { bool operator()(const TuningRecord& lhs, const TuningRecord& rhs) const; }; }; enum class DatabaseType : int { kMemory, kJSONFile }; struct DatabaseConfig { DatabaseType type = DatabaseType::kMemory; int capacity_per_task = 2; std::string record_file_path = "/tmp/tuning_record.json"; }; // A database supports insert or lookup historial tuning result with specified // traits. It can be implemented with a concrete storage to save/load underlying // data, such as memory, file, database server and so on, this base class can be // regarded as one using memory as its underlying storage medium. class Database { public: explicit Database(int capacity_per_task); ~Database() = default; // Create a Database with the specific config static std::unique_ptr Make(const DatabaseConfig& config); // add a record into the database bool AddRecord(const TuningRecord& record); // return all records whose task_keys are equal to the specified key std::vector LookUp(const std::string& task_key); // return the states of the top k in sorted candidates std::vector GetTopK(const std::string& task_key, int k); // return the total number of stored candidates size_t Size(); // return the number of stored candidates with specified key size_t Count(const std::string& task_key); protected: // commit the newly added record into underlying storage virtual bool Commit(const TuningRecord& record) { return true; } // insert a newly added record into memory storage void Insert(const TuningRecord& record); // map task_key to its records std::unordered_map> key2record_; // the max number of candidates stored const int capacity_per_task_; }; } // namespace auto_schedule } // namespace cinn