# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fleet Metrics""" import paddle.fluid as fluid import math import numpy as np from paddle.fluid.framework import Variable from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet def sum(input, scope=None): """ distributed sum in fleet Args: input(numpy.array|Variable|string): output of a layer scope(Scope): specific scope Returns: global_metric(numpy.array): sum array Example: .. code-block:: python # in model.py input = fluid.layers.cast(some_input, dtype='float32') cnt = fluid.layers.reduce_sum(input) global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0) tmp = fluid.layers.elementwise_add(cnt, global_cnt) fluid.layers.assign(tmp, global_cnt) # in train.py, after train or infer res = np.array(scope.find_var(global_cnt.name).get_tensor()) print("sum array: ", paddle.distributed.fleet.sum(res)) """ fleet._role_maker._barrier_worker() if scope is None: scope = fluid.global_scope() if isinstance(input, Variable): input = np.array(scope.find_var(input.name).get_tensor()) elif isinstance(input, str): input = np.array(scope.find_var(input).get_tensor()) old_shape = np.array(input.shape) output = np.copy(input) * 0 fleet._role_maker._all_reduce(input, output, mode="sum") output = output.reshape(old_shape) return output def max(input, scope=None): """ distributed max in fleet Args: input(numpy.array|Variable|string): output of a layer scope(Scope): specific scope Returns: global_metric(numpy.array): max array Example: .. code-block:: python # in model.py input = fluid.layers.cast(some_input, dtype='float32') cnt = fluid.layers.reduce_sum(input) global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0) tmp = fluid.layers.elementwise_max(cnt, global_cnt) fluid.layers.assign(tmp, global_cnt) # in train.py, after train or infer res = np.array(scope.find_var(global_cnt.name).get_tensor()) print("max array: ", paddle.distributed.fleet.max(res)) """ fleet._role_maker._barrier_worker() if scope is None: scope = fluid.global_scope() if isinstance(input, Variable): input = np.array(scope.find_var(input.name).get_tensor()) elif isinstance(input, str): input = np.array(scope.find_var(input).get_tensor()) old_shape = np.array(input.shape) output = np.copy(input) * 0 fleet._role_maker._all_reduce(input, output, mode="max") output = output.reshape(old_shape) return output def min(input, scope=None): """ distributed min in fleet Args: input(numpy.array|Variable|string): output of a layer scope(Scope): specific scope Returns: global_metric(numpy.array): min array Example: .. code-block:: python # in model.py input = fluid.layers.cast(some_input, dtype='float32') cnt = fluid.layers.reduce_sum(input) global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0) tmp = fluid.layers.elementwise_min(cnt, global_cnt) fluid.layers.assign(tmp, global_cnt) # in train.py, after train or infer res = np.array(scope.find_var(global_cnt.name).get_tensor()) print("min array: ", paddle.distributed.fleet.min(res)) """ fleet._role_maker._barrier_worker() if scope is None: scope = fluid.global_scope() if isinstance(input, Variable): input = np.array(scope.find_var(input.name).get_tensor()) elif isinstance(input, str): input = np.array(scope.find_var(input).get_tensor()) old_shape = np.array(input.shape) output = np.copy(input) * 0 fleet._role_maker._all_reduce(input, output, mode="min") output = output.reshape(old_shape) return output def auc(stat_pos, stat_neg, scope=None): """ distributed auc in fleet Args: stat_pos(numpy.array|Variable|string): stat_pos in output of fluid.layers.auc stat_neg(numpy.array|Variable|string): stat_neg in output of fluid.layers.auc scope(Scope): specific scope Returns: auc_value(float): auc value Example: .. code-block:: python # in model.py similarity_norm = fluid.layers.sigmoid(fluid.layers.clip(output, min=-15.0, max=15.0)) binary_predict = fluid.layers.concat( input=[fluid.layers.elementwise_sub(fluid.layers.ceil(similarity_norm), similarity_norm), similarity_norm], axis=1) self.auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg] = fluid.layers.auc(input=binary_predict, label=label, curve='ROC', num_thresholds=4096) # in train.py, after train or infer pos = np.array(scope.find_var(stat_pos.name).get_tensor()) neg = np.array(scope.find_var(stat_neg.name).get_tensor()) print("auc: ", paddle.distributed.fleet.auc(pos, neg)) """ fleet._role_maker._barrier_worker() if scope is None: scope = fluid.global_scope() if isinstance(stat_pos, Variable): stat_pos = np.array(scope.find_var(stat_pos.name).get_tensor()) elif isinstance(stat_pos, str): stat_pos = np.array(scope.find_var(stat_pos).get_tensor()) if isinstance(stat_neg, Variable): stat_neg = np.array(scope.find_var(stat_neg.name).get_tensor()) elif isinstance(stat_neg, str): stat_neg = np.array(scope.find_var(stat_neg).get_tensor()) # auc pos bucket shape old_pos_shape = np.array(stat_pos.shape) # reshape to one dim stat_pos = stat_pos.reshape(-1) global_pos = np.copy(stat_pos) * 0 # mpi allreduce fleet._role_maker._all_reduce(stat_pos, global_pos) # reshape to its original shape global_pos = global_pos.reshape(old_pos_shape) # auc neg bucket old_neg_shape = np.array(stat_neg.shape) stat_neg = stat_neg.reshape(-1) global_neg = np.copy(stat_neg) * 0 fleet._role_maker._all_reduce(stat_neg, global_neg) global_neg = global_neg.reshape(old_neg_shape) # calculate auc num_bucket = len(global_pos[0]) area = 0.0 pos = 0.0 neg = 0.0 new_pos = 0.0 new_neg = 0.0 total_ins_num = 0 for i in range(num_bucket): index = num_bucket - 1 - i new_pos = pos + global_pos[0][index] total_ins_num += global_pos[0][index] new_neg = neg + global_neg[0][index] total_ins_num += global_neg[0][index] area += (new_neg - neg) * (pos + new_pos) / 2 pos = new_pos neg = new_neg auc_value = None if pos * neg == 0 or total_ins_num == 0: auc_value = 0.5 else: auc_value = area / (pos * neg) fleet._role_maker._barrier_worker() return auc_value def mae(abserr, total_ins_num, scope=None): """ distributed mae in fleet Args: abserr(numpy.array|Variable|string): abserr in output of fluid.contrib.layers.ctr_metric_bundle total_ins_num(int|float): total train/infer instance count scope(Scope): specific scope Returns: mae(float): mae value Example: .. code-block:: python # in model.py sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32')) # in train.py, after train or infer res = np.array(scope.find_var(abserr.name).get_tensor()) print("mae: ", paddle.distributed.fleet.mae(res, total_ins_num)) """ fleet._role_maker._barrier_worker() if scope is None: scope = fluid.global_scope() if isinstance(abserr, Variable): abserr = np.array(scope.find_var(abserr.name).get_tensor()) elif isinstance(abserr, str): abserr = np.array(scope.find_var(abserr).get_tensor()) old_metric_shape = np.array(abserr.shape) abserr = abserr.reshape(-1) global_metric = np.copy(abserr) * 0 fleet._role_maker._all_reduce(abserr, global_metric) global_metric = global_metric.reshape(old_metric_shape) mae_value = global_metric[0] / total_ins_num return mae_value def rmse(sqrerr, total_ins_num, scope=None): """ distributed rmse in fleet Args: sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle total_ins_num(int|float): total train/infer instance count scope(Scope): specific scope Returns: rmse(float): rmse value Example: .. code-block:: python # in model.py sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32')) # in train.py, after train or infer res = np.array(scope.find_var(sqrerr.name).get_tensor()) print("rmse: ", paddle.distributed.fleet.rmse(res, total_ins_num)) """ fleet._role_maker._barrier_worker() if scope is None: scope = fluid.global_scope() if isinstance(sqrerr, Variable): sqrerr = np.array(scope.find_var(sqrerr.name).get_tensor()) elif isinstance(sqrerr, str): sqrerr = np.array(scope.find_var(sqrerr).get_tensor()) old_metric_shape = np.array(sqrerr.shape) sqrerr = sqrerr.reshape(-1) global_metric = np.copy(sqrerr) * 0 fleet._role_maker._all_reduce(sqrerr, global_metric) global_metric = global_metric.reshape(old_metric_shape) rmse_value = math.sqrt(global_metric[0] / total_ins_num) return rmse_value def mse(sqrerr, total_ins_num, scope=None): """ distributed mse in fleet Args: sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle total_ins_num(int|float): total train/infer instance count scope(Scope): specific scope Returns: mse(float): mse value Example: .. code-block:: python # in model.py sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32')) # in train.py, after train or infer metric = np.array(scope.find_var(sqrerr.name).get_tensor()) print("mse: ", paddle.distributed.fleet.mse(metric, total_ins_num)) """ fleet._role_maker._barrier_worker() if scope is None: scope = fluid.global_scope() if isinstance(sqrerr, Variable): sqrerr = np.array(scope.find_var(sqrerr.name).get_tensor()) elif isinstance(sqrerr, str): sqrerr = np.array(scope.find_var(sqrerr).get_tensor()) old_metric_shape = np.array(sqrerr.shape) sqrerr = sqrerr.reshape(-1) global_metric = np.copy(sqrerr) * 0 fleet._role_maker._all_reduce(sqrerr, global_metric) global_metric = global_metric.reshape(old_metric_shape) mse_value = global_metric[0] / total_ins_num return mse_value def acc(correct, total, scope=None): """ distributed accuracy in fleet Args: correct(numpy.array|Variable|string): correct Variable total(numpy.array|Variable): total Variable scope(Scope): specific scope Returns: acc(float): accuracy value Example: .. code-block:: python # in model.py correct = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0) total = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0) acc = fluid.layers.acc(predict, label, k=1, correct=correct, total=total) global_correct = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0) tmp1 = fluid.layers.elementwise_min(correct, global_correct) fluid.layers.assign(tmp1, global_correct) global_total = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0) tmp2 = fluid.layers.elementwise_min(total, global_total) fluid.layers.assign(tmp2, global_total) # in train.py, after train or infer correct_num = np.array(scope.find_var(correct.name).get_tensor()) total_num = np.array(scope.find_var(total.name).get_tensor()) print("accuracy: ", paddle.distributed.fleet.acc(correct_num, total_num)) """ fleet._role_maker._barrier_worker() if scope is None: scope = fluid.global_scope() if isinstance(correct, Variable): correct = np.array(scope.find_var(correct.name).get_tensor()) elif isinstance(correct, str): correct = np.array(scope.find_var(correct).get_tensor()) if isinstance(total, Variable): total = np.array(scope.find_var(total.name).get_tensor()) elif isinstance(total, str): total = np.array(scope.find_var(total).get_tensor()) global_correct_num = np.copy(correct) * 0 global_total_num = np.copy(total) * 0 fleet._role_maker._all_reduce(correct, global_correct_num) fleet._role_maker._all_reduce(total, global_total_num) return float(global_correct_num[0]) / float(global_total_num[0])