// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef PADDLE_FLUID_FRAMEWORK_IR_LOCK_FREE_OPTIMIZE_PASS_H_ #define PADDLE_FLUID_FRAMEWORK_IR_LOCK_FREE_OPTIMIZE_PASS_H_ #include #include #include #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/pass.h" namespace paddle { namespace framework { namespace ir { class Node; /* * Remove the sum op of all gradients of the backward op. * And remove the dependecies of the optimizer related to the * same backward op. * * Before this pass: * * forward_op1 forward_op2 * | | * grad_op1 grad_op2 * \ / * \ / * sum_op * | * sgd_op * * After this pass: * forward_op1 forward_op2 * | | * grad_op1 grad_op2 * | | * sgd_op1 sgd_op2 * * sgd_op1 and sgd_op2 will update the same weight which holds the same * memory, so we could benefits from the acceleration */ class LockFreeOptimizePass : public Pass { public: virtual ~LockFreeOptimizePass() {} protected: void ApplyImpl(ir::Graph* graph) const override; private: // Create a new sgd node via current optimizer node ir::Node* CreateNewSGDNode(ir::Graph* graph, ir::Node* forward_node, ir::Node* backward_node, ir::Node* grad_sum_node, ir::Node* optimize_node) const; // Replace the input weight's optimizers void ReplaceUpstreamNode(ir::Node* upstream_node, ir::Node* old_optimizer_node, ir::Node* new_optimizer_node) const; // Replace the output weight's optimizers void ReplaceAllDownstreamNode(ir::Node* old_optimizer_node, ir::Node* new_optimizer_node) const; // Find all weight variables in graph bool FindAllWeightVars(ir::Graph* graph) const; // Find the forward_op node via the backward_op node ir::Node* FindForwardOpViaBackwardOp(ir::Graph* graph, ir::Node* backward_node) const; std::vector FindConnectedNode(ir::Node* upstream_node, ir::Node* downstream_node) const; inline bool IsOpNamed(ir::Node* node, const std::string& name) const { PADDLE_ENFORCE(node); return node->NodeType() == Node::Type::kOperation && node->Name() == name; } inline bool IsVarNamed(ir::Node* node, const std::string& name) const { PADDLE_ENFORCE(node); return node->NodeType() == Node::Type::kVariable && node->Name() == name; } inline bool IsVarNameEndsWith(ir::Node* node, const std::string& name) const { PADDLE_ENFORCE(node); return node->NodeType() == Node::Type::kVariable && boost::algorithm::ends_with(node->Name(), name); } inline bool IsVarNameContains(ir::Node* node, const std::string& name) const { PADDLE_ENFORCE(node); return node->NodeType() == Node::Type::kVariable && node->Name().find(name) != std::string::npos; } inline bool IsControlDepFrom(ir::Node* ctrl_dep_node, ir::Node* node) const { PADDLE_ENFORCE(ctrl_dep_node); PADDLE_ENFORCE(node); return IsControlDepVar(*ctrl_dep_node) && ctrl_dep_node->inputs.size() >= 1u && ctrl_dep_node->inputs[0] == node; } }; } // namespace ir } // namespace framework } // namespace paddle #endif // PADDLE_FLUID_FRAMEWORK_IR_LOCK_FREE_OPTIMIZE_PASS_H_