// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include "paddle/fluid/framework/details/computation_op_handle.h" #include "paddle/fluid/framework/details/eager_deletion_op_handle.h" #include "paddle/fluid/framework/details/multi_devices_helper.h" #include "paddle/fluid/framework/garbage_collector.h" #include "paddle/fluid/framework/ir/graph_helper.h" namespace paddle { namespace framework { namespace details { // op -> variables which can be deleted after op runs using OpToVarNameSetMap = std::unordered_map>; // Check whether the variable is LoDTensor based on static VarDesc info static bool IsLoDTensor(VarDesc *var) { return var->Proto()->type().type() == proto::VarType::LOD_TENSOR; } // Get memory size of LoDTensor static int64_t GetMemorySize( const std::unordered_map> &vars, const std::string &var_name) { auto *var_desc = TryGetLatestVarDesc(vars.at(var_name)); PADDLE_ENFORCE_NOT_NULL(var_desc); PADDLE_ENFORCE(IsLoDTensor(var_desc)); auto dims = var_desc->GetShape(); return SizeOfType(var_desc->GetDataType()) * std::accumulate(dims.begin(), dims.end(), static_cast(1), std::multiplies()); } // Split all variables in the graph into LoDTensor and Non-LoDTensor (e.g. // SelectedRows, LoDTensorArray) // Since partial GC is based on static analysis of memory size of each variable // So we should skip SelectedRows and LoDTensorArray here static void SplitIntoLoDTensorAndNonLoDTensorVars( const OpToVarNameSetMap &m, const GraphVars &vars, OpToVarNameSetMap *lod_tensors, OpToVarNameSetMap *other_vars) { lod_tensors->clear(); other_vars->clear(); for (auto &op_vars_pair : m) { for (auto &var_name : op_vars_pair.second) { auto *var_desc = TryGetLatestVarDesc( vars[op_vars_pair.first->GetScopeIdx()].at(var_name)); if (IsLoDTensor(var_desc)) { (*lod_tensors)[op_vars_pair.first].insert(var_name); } else { (*other_vars)[op_vars_pair.first].insert(var_name); } } } } struct GCVarInfo { GCVarInfo(const std::string &name, int64_t memory_size, ComputationOpHandle *op, size_t scope_idx) : name_(name), memory_size_(memory_size), op_(op), scope_idx_(scope_idx) {} std::string name_; // variable name int64_t memory_size_; // memory size ComputationOpHandle *op_; // op after which the variable could be deleted size_t scope_idx_; // scope index where the variable locates int64_t AbsMemorySize() const { return std::abs(memory_size_); } }; // Delete delete_lod_tensor_only is not used currently static OpToVarNameSetMap ShrinkGCVars( const OpToVarNameSetMap &m, const GraphVars &vars, const std::vector &places, double fraction_of_memory_size, bool delete_lod_tensor_only = false) { // Do not perform gc when fraction_of_memory_size = 0 if (fraction_of_memory_size <= 0.0) return {}; /** * Step 1: Split all variables into LoDTensor and Non-LoDTensor. * We can only calculate memory size of LoDTensors */ OpToVarNameSetMap lod_tensors, other_vars; SplitIntoLoDTensorAndNonLoDTensorVars(m, vars, &lod_tensors, &other_vars); // Perform complete gc when fraction_of_memory_size >= 1 if (fraction_of_memory_size >= 1.0) { return delete_lod_tensor_only ? lod_tensors : m; } /** * Step 2: build GCVarInfos, and calculate total memory sizes of each device */ // place -> variable info (name, memory size, place, scope_idx) std::map> place_to_vars; // place -> total memory sizes std::map place_to_size; for (auto &op_vars_pair : lod_tensors) { auto *op = op_vars_pair.first; auto &var_names = op_vars_pair.second; auto scope_idx = op->GetScopeIdx(); auto &place = places[scope_idx]; for (auto &var_name : var_names) { auto var_size = GetMemorySize(vars[scope_idx], var_name); GCVarInfo var_info(var_name, var_size, op, scope_idx); place_to_size[place] += var_info.AbsMemorySize(); place_to_vars[place].emplace_back(std::move(var_info)); } } /** * Step 3: sort GCVarInfos, and only delete the largest variables. */ OpToVarNameSetMap partial_vars; for (auto &place_to_var_pair : place_to_vars) { auto &place = place_to_var_pair.first; auto &gc_vars = place_to_var_pair.second; std::sort(gc_vars.begin(), gc_vars.end(), [](const GCVarInfo &var1, const GCVarInfo &var2) { return var1.AbsMemorySize() > var2.AbsMemorySize(); }); int64_t accumulated_size = 0; int64_t size_threshold = static_cast(fraction_of_memory_size * place_to_size[place]); for (size_t i = 0; i < gc_vars.size() && accumulated_size < size_threshold; ++i) { partial_vars[gc_vars[i].op_].insert(gc_vars[i].name_); accumulated_size += gc_vars[i].AbsMemorySize(); } } /** * Step 4: Combine other vars (SelectedRows, LoDTensorArray) */ if (!delete_lod_tensor_only) { for (auto &op_vars_pair : other_vars) { partial_vars[op_vars_pair.first].insert(op_vars_pair.second.begin(), op_vars_pair.second.end()); } } return partial_vars; } class EagerDeletionPass : public ir::Pass { protected: void ApplyImpl(ir::Graph *graph) const override; }; void EagerDeletionPass::ApplyImpl(ir::Graph *graph) const { auto &ref_cnts = Get>(kRuntimeReferenceCount); PADDLE_ENFORCE(ref_cnts.empty(), "kRuntimeReferenceCount should be initialized here!"); const auto &vars = graph->Get(kGraphVars); ref_cnts.resize(vars.size()); const auto &last_live_ops = Get>(kLastLiveOpsOfVars); const auto &gcs = Get(kGarbageCollector); const auto &places = Get>(kAllPlaces); // a reverse map of last_live_ops // i.e., last op --> variable names which can be deleted. OpToVarNameSetMap op_vars_map; for (auto &var_ops_map : last_live_ops) { for (auto &var_ops_pair : var_ops_map) { const std::string &var_name = var_ops_pair.first; for (auto *op : var_ops_pair.second) { op_vars_map[op].insert(var_name); } } } double memory_fraction = framework::GetEagerDeletionMemoryFraction(); op_vars_map = ShrinkGCVars(op_vars_map, vars, places, memory_fraction); for (auto &pair : op_vars_map) { auto *op = pair.first; auto &var_names = pair.second; auto *eager_deletion_node = graph->CreateEmptyNode("eager_deletion", ir::Node::Type::kOperation); auto *eager_deletion_op = new EagerDeletionOpHandle( eager_deletion_node, op->GetScope(), op->GetPlace(), var_names, gcs.at(places[op->GetScopeIdx()]).get(), &(ref_cnts[op->GetScopeIdx()])); auto it = std::find_if( op->Outputs().begin(), op->Outputs().end(), [](VarHandleBase *var) { return dynamic_cast(var) != nullptr; }); if (it != op->Outputs().end()) { eager_deletion_op->AddInput(*it); } else { auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar()); graph->Get(kGraphDepVars).emplace(dep_var); op->AddOutput(dep_var); eager_deletion_op->AddInput(dep_var); } auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar()); graph->Get(kGraphDepVars).emplace(dummy_leaf); eager_deletion_op->AddOutput(dummy_leaf); } VLOG(10) << "FLAGS_memory_fraction_of_eager_deletion = " << memory_fraction; VLOG(10) << "Create " << op_vars_map.size() << " EagerDeletionOpHandle(s)"; auto while_op_eager_deletion_pass = ir::PassRegistry::Instance().Get("while_op_eager_deletion_pass"); while_op_eager_deletion_pass->Apply(graph); } } // namespace details } // namespace framework } // namespace paddle REGISTER_PASS(eager_deletion_pass, paddle::framework::details::EagerDeletionPass) .RequirePassAttr(paddle::framework::details::kRuntimeReferenceCount) .RequirePassAttr(paddle::framework::details::kLastLiveOpsOfVars) .RequirePassAttr(paddle::framework::details::kAllPlaces) .RequirePassAttr(paddle::framework::details::kGarbageCollector); USE_PASS(while_op_eager_deletion_pass);