# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict import numpy as np import paddle from paddle import _legacy_C_ops from paddle.distributed.parallel import _split_tensors from paddle.fluid import core from paddle.framework import base as imperative_base __all__ = [] FLOAT_TYPE_DICT = { paddle.float16: "float16", paddle.float32: "float32", paddle.float64: "float64", paddle.bfloat16: "bfloat16", } PADDLE_TO_NUMBER = { paddle.float16: 0, paddle.float32: 1, paddle.float64: 2, paddle.int32: 3, paddle.int64: 4, paddle.bfloat16: 5, } NUMBER_TO_DTYPE = { 0: "float16", 1: "float32", 2: "float64", 3: "int32", 4: "int64", 5: "bfloat16", } def is_float_tensor(tensor): """Is a float tensor""" return tensor.dtype in FLOAT_TYPE_DICT.keys() def get_tensor_dtype(dtype): assert dtype in FLOAT_TYPE_DICT.keys() return FLOAT_TYPE_DICT[dtype] def paddle_2_number(dtype): assert dtype in PADDLE_TO_NUMBER.keys() return PADDLE_TO_NUMBER[dtype] def number_2_dtype(number): assert number in NUMBER_TO_DTYPE.keys() return NUMBER_TO_DTYPE[number] def get_tensor_bytes(tensor): """Get the bytes a tensor occupied.""" elem_size = None if tensor.dtype == paddle.float32: elem_size = 4 elif tensor.dtype == paddle.float64: elem_size = 8 elif tensor.dtype == paddle.int64: elem_size = 8 elif tensor.dtype == paddle.int32: elem_size = 4 elif tensor.dtype == paddle.float16: elem_size = 2 elif tensor.dtype == paddle.int8: elem_size = 1 else: raise ValueError(f"unknown data type: {tensor.dtype}") return tensor.numel() * elem_size def _all_gather(tensor, group=None, use_calc_stream=True): """ The main difference with paddle.distributed.all_gather: no need to pass in tensor_list, the returned tensor is spliced """ if group is not None and not group.is_member(): return ring_id = 0 if group is None else group.id nranks = ( paddle.distributed.collective._get_global_group().nranks if group is None else group.nranks ) return _legacy_C_ops.c_allgather( tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id, 'nranks', nranks, ) class FusedAllReduceBuffer: def __init__(self, id, params, comm_group, acc_steps=1): self._id = id self._params = params self._acc_steps = acc_steps self._comm_group = comm_group self._tasks = [] self._grads = [] self._params_step_dict = {} self._params_checked_in = 0 self._coalesced_grads_and_grad_vars = [] self._init_step_dict() def _init_step_dict(self): for p in self._params: self._params_step_dict[p.name] = 0 def _reset_params_checked_in(self): self._tasks.clear() self._grads.clear() self._init_step_dict() self._params_checked_in = 0 self._coalesced_grads_and_grad_vars.clear() @property def _all_params_checked_in(self): return ( len(self._params) == self._params_checked_in and len(self._params_step_dict) == 0 ) def add_grad(self, param): assert param.name in self._params_step_dict if self._params_step_dict[param.name] == 0: if getattr(param, "main_grad", None) is not None: assert param.grad is None self._grads.append(param.main_grad) else: self._grads.append(param.grad) self._params_step_dict[param.name] += 1 if self._params_step_dict[param.name] == self._acc_steps: self._params_checked_in += 1 self._params_step_dict.pop(param.name) if self._all_params_checked_in: self._fused_allreduce_grads() @imperative_base.no_grad def _fused_allreduce_grads(self): assert self._all_params_checked_in flattened_vars = [] g_var_shapes = [] for g_var in self._grads: g_var_shapes.append(g_var.shape) flattened_vars.append( paddle.reshape(x=g_var, shape=[np.prod(g_var.shape)]) ) coalesced_grad = paddle.concat(flattened_vars) self._coalesced_grads_and_grad_vars.append( [coalesced_grad, self._grads, g_var_shapes] ) for coalesced_grad, _, _ in self._coalesced_grads_and_grad_vars: self._tasks.append( paddle.distributed.all_reduce( coalesced_grad, group=self._comm_group, sync_op=False ) ) @imperative_base.no_grad def scale_and_split_grads(self): for task in self._tasks: task.wait() scale_factor = 1.0 / self._comm_group.nranks for coalesced_grad, _, _ in self._coalesced_grads_and_grad_vars: coalesced_grad.scale_(scale_factor) _split_tensors(self._coalesced_grads_and_grad_vars) self._reset_params_checked_in() def assign_group_by_size(parameters, group_size=128 * 1024 * 1024): group_idx = 0 memory_counter = 0 var_groups = OrderedDict() dtype = parameters[0].dtype for var in parameters: bytes = np.prod(var.shape) * core.size_of_dtype(var.dtype) if memory_counter < group_size and dtype == var.dtype: memory_counter += bytes else: memory_counter = bytes dtype = var.dtype group_idx += 1 var_groups.setdefault(group_idx, []).append(var) return var_groups