/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { template struct DequantizeFunctor { void operator()(const DeviceContext& dev_ctx, const framework::Tensor* in, const framework::Tensor* scale, T max_range, framework::Tensor* out); }; template class FakeDequantizeMaxAbsKernel : public framework::OpKernel { public: virtual void Compute(const framework::ExecutionContext& ctx) const { auto* in = ctx.Input("X"); auto* scale = ctx.Input("Scale"); auto* out = ctx.Output("Out"); float max_range = ctx.Attr("max_range"); auto& dev_ctx = ctx.template device_context(); out->mutable_data(dev_ctx.GetPlace()); DequantizeFunctor()(dev_ctx, in, scale, static_cast(max_range), out); } }; template class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel { public: virtual void Compute(const framework::ExecutionContext& ctx) const { auto* in = ctx.Input("X"); auto scales = ctx.MultiInput("Scales"); auto* out = ctx.Output("Out"); auto quant_bits = ctx.Attr>("quant_bits"); int max_range = std::pow(2, quant_bits[0] - 1) - 1; auto& dev_ctx = ctx.template device_context(); out->mutable_data(dev_ctx.GetPlace()); auto dequant = DequantizeFunctor(); if (scales.size() == 1) { PADDLE_ENFORCE_EQ( scales[0]->numel(), in->dims()[0], "The number of first scale values must be the same with " "first dimension value of Input(X) when the `Scales` has only one " "element."); for (int64_t i = 0; i < in->dims()[0]; i++) { framework::Tensor one_channel_in = in->Slice(i, i + 1); framework::Tensor one_channel_out = out->Slice(i, i + 1); framework::Tensor one_channel_scale = scales[0]->Slice(i, i + 1); dequant(dev_ctx, &one_channel_in, &one_channel_scale, static_cast(max_range), &one_channel_out); } } else if (scales.size() == 2) { PADDLE_ENFORCE_EQ( scales[0]->numel(), in->dims()[1], "The number of first scale values must be the same with " "second dimension value of Input(X) when the `Scales` has two " "elements."); for (int64_t i = 0; i < in->dims()[0]; i++) { framework::Tensor one_batch_in = in->Slice(i, i + 1).Resize( framework::slice_ddim(in->dims(), 1, in->dims().size())); framework::Tensor one_batch_out = out->Slice(i, i + 1).Resize( framework::slice_ddim(out->dims(), 1, out->dims().size())); for (int64_t j = 0; j < in->dims()[1]; j++) { framework::Tensor one_channel_in = one_batch_in.Slice(j, j + 1); framework::Tensor one_channel_out = one_batch_out.Slice(j, j + 1); framework::Tensor one_channel_scale = scales[0]->Slice(j, j + 1); dequant(dev_ctx, &one_channel_in, &one_channel_scale, static_cast(max_range), &one_channel_out); } } PADDLE_ENFORCE_EQ( scales[1]->numel(), 1, "The second scale tensor should only have one value at now."); max_range = std::pow(2, quant_bits[1] - 1) - 1; dequant(dev_ctx, out, scales[1], static_cast(max_range), out); } } }; } // namespace operators } // namespace paddle