/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/phi/api/ext/exception.h" #include "paddle/phi/api/include/tensor.h" namespace paddle { namespace experimental { template class IntArrayBase { public: // Constructor support implicit IntArrayBase() = default; IntArrayBase(const std::vector& vec) : array_(vec) {} // NOLINT IntArrayBase(const std::vector& vec) { // NOLINT array_.insert(array_.begin(), vec.begin(), vec.end()); } IntArrayBase(std::initializer_list array_list) : array_(array_list) {} IntArrayBase(const int64_t* date_value, int64_t n) { AssignData(date_value, n); } IntArrayBase(const int32_t* date_value, int64_t n) { AssignData(date_value, n); } bool FromTensor() const { return is_from_tensor_; } void SetFromTensor(bool val) { is_from_tensor_ = val; } // The Tensor must have one dim IntArrayBase(const T& tensor) { // NOLINT is_from_tensor_ = true; size_t n = tensor.numel(); array_.reserve(n); switch (tensor.dtype()) { case DataType::INT32: AssignData(tensor.template data(), n); break; case DataType::INT64: AssignData(tensor.template data(), n); break; default: PD_THROW( "Data type error. Currently, The data type of IntArrayBase " "only supports Tensor with int32 and int64, " "but now received `", tensor.dtype(), "`."); } } // The Tensor in vec must have only one element IntArrayBase(const std::vector& tensor_list) { // NOLINT is_from_tensor_ = true; for (size_t i = 0; i < tensor_list.size(); ++i) { DataType data_type = tensor_list[i].dtype(); switch (data_type) { case DataType::INT32: array_.push_back(*tensor_list[i].template data()); break; case DataType::INT64: array_.push_back(*tensor_list[i].template data()); break; default: PD_THROW( "Data type error. Currently, The data type of IntArrayBase " "only supports Tensor with int32 and int64, " "but now received `", data_type, "`."); } } } template IntArrayBase(const IntArrayBase& other) : array_(other.GetData()) {} size_t size() const { return array_.size(); } const std::vector& GetData() const { return array_; } private: /// \brief Assign the data_ from const data pointer value of type T. template void AssignData(const TYPE* value_data, int64_t n) { if (value_data || n == 0) { array_.reserve(n); for (auto i = 0; i < n; ++i) { array_.push_back(static_cast(value_data[i])); } } else { PD_THROW("The input data pointer is null."); } } private: // TODO(zhangyunfei) Replace std::vector with a more efficient container // structure. std::vector array_; bool is_from_tensor_{false}; }; using IntArray = paddle::experimental::IntArrayBase; } // namespace experimental } // namespace paddle namespace phi { class DenseTensor; using IntArray = paddle::experimental::IntArrayBase; } // namespace phi