# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest def fsp_matrix(a, b): batch = a.shape[0] a_channel = a.shape[1] b_channel = b.shape[1] h = a.shape[2] w = a.shape[3] a_t = a.transpose([0, 2, 3, 1]) a_t = a_t.reshape([batch, h * w, a_channel]) b_t = b.transpose([0, 2, 3, 1]).reshape([batch, h * w, b_channel]) a_r = a_t.repeat( b_channel, axis=1).reshape( [batch, h * w, b_channel, a_channel]).transpose([0, 1, 3, 2]) b_r = b_t.repeat( a_channel, axis=1).reshape([batch, h * w, a_channel, b_channel]) return np.mean(a_r * b_r, axis=1) class TestFSPOp(OpTest): def setUp(self): self.op_type = "fsp" self.initTestCase() feature_map_0 = np.random.uniform(0, 10, self.a_shape).astype('float32') feature_map_1 = np.random.uniform(0, 10, self.b_shape).astype('float32') self.inputs = {'X': feature_map_0, 'Y': feature_map_1} self.outputs = {'Out': fsp_matrix(feature_map_0, feature_map_1)} def initTestCase(self): self.a_shape = (2, 16, 32, 31) self.b_shape = (2, 28, 32, 31) def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05) if __name__ == '__main__': unittest.main()