/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/utils/Stat.h" #include "paddle/utils/Util.h" #include "paddle/utils/Flags.h" #include #include #include #include #include #include "RecurrentGradientMachine.h" #include "NeuralNetwork.h" #include "paddle/gserver/layers/AgentLayer.h" P_DEFINE_string(diy_beam_search_prob_so, "", "the diy beam search cost so"); static const char* DIY_CALC_PROB_SYMBOL_NAME = "calc_prob"; static const char* DIY_START_CALC_PROB_SYMBOL_NAME = "start_calc_prob"; static const char* DIY_FINISH_CALC_PROB_SYMBOL_NAME = "finish_calc_prob"; namespace paddle { /** * Start Custom Calculate Probability callback type. * * @param nNode, nodes: the path will be explored. nNodes is array size. * nodes is array elements. * * @return: A custom handler id that will passed to another callback. */ typedef int (*DiyStartCalcProbCallback)(size_t nNodes, int* nodes); /** * Doing Custom Calculation of Probability callback type. * * @param handler: User custom handler. The return value from start calc prob. * @param nNode, nodes: Array. The current path. * @param curProb: The current log probability that neural network returns. * * @return: Log probability which user calculated, it will be updated to this * path. * @NOTE: Return -INFINITY will DROP this path IMMEDIATELY!! */ typedef real (*DiyCalcProbCallback)( int handler, size_t nNodes, int* nodes, real curProb, bool atEos); /** * Finish Custom Calculation of Probability callback type. * * @param handler: User custom handler. The return value from start calc prob. */ typedef void (*DiyStopCalcProbCallback)(int handler); static DiyCalcProbCallback gDiyProbMethod = nullptr; static DiyStartCalcProbCallback gDiyProbStart = nullptr; static DiyStopCalcProbCallback gDiyProbStop = nullptr; static void* gDiyProbHandle = nullptr; static void exit_diy_prob() { dlclose(gDiyProbHandle); } template static inline SymbolType loadDiySymbol(const char* symbolName) { void* sym = dlsym(gDiyProbHandle, symbolName); CHECK(sym) << "Cannot load symbol " << symbolName << " from " << FLAGS_diy_beam_search_prob_so; return reinterpret_cast(sym); } static InitFunction __init__diy_prob_method([] { std::string soName = FLAGS_diy_beam_search_prob_so; if (!soName.empty()) { gDiyProbHandle = dlopen(soName.c_str(), RTLD_LAZY); CHECK(gDiyProbHandle) << "Cannot Open DIY Prob So " << soName; atexit(exit_diy_prob); gDiyProbMethod = loadDiySymbol(DIY_CALC_PROB_SYMBOL_NAME); gDiyProbStart = loadDiySymbol(DIY_START_CALC_PROB_SYMBOL_NAME); gDiyProbStop = loadDiySymbol(DIY_FINISH_CALC_PROB_SYMBOL_NAME); } }, std::numeric_limits::max()); class BeamSearchControlCallbacks { public: RecurrentGradientMachine::BeamSearchCandidatesAdjustCallback beamSearchCandidateAdjust; RecurrentGradientMachine::NormOrDropNodeCallback normOrDropNode; RecurrentGradientMachine::DropCallback stopDetermineCandidates; //! for gcc46 aggregate initialization is not very well, so we need to //! explicit BeamSearchControlCallbacks( const RecurrentGradientMachine::BeamSearchCandidatesAdjustCallback& candidateAdjust, const RecurrentGradientMachine::NormOrDropNodeCallback& norm, const RecurrentGradientMachine::DropCallback& stop) : beamSearchCandidateAdjust(candidateAdjust), normOrDropNode(norm), stopDetermineCandidates(stop) {} }; class BeamSearchStatisticsCallbacks { public: RecurrentGradientMachine::EachStepCallback onEachStepStarted; RecurrentGradientMachine::EachStepCallback onEachStepStoped; BeamSearchStatisticsCallbacks( const RecurrentGradientMachine::EachStepCallback& start, const RecurrentGradientMachine::EachStepCallback& stop) : onEachStepStarted(start), onEachStepStoped(stop) {} }; RecurrentGradientMachine::RecurrentGradientMachine( const std::string& subModelName, NeuralNetwork* rootNetwork) : NeuralNetwork(subModelName), rootNetwork_(rootNetwork), beamSearchCtrlCallbacks_(nullptr), beamSearchStatistics_(nullptr) { CHECK(!subModelName_.empty()); } /** * bias layer, as input of memory frame 0 will give vector of zeros * if bias parameter is not set. * * boot bias layer create directly in recurrent gradient machine, because: * * 1. It is only one frame, so it should not be placed in layer group, * which is one instance for every one frame. * * 2. It is no input layer, so it need resetHeight() before forward(), * and resetHeight() must be called in recurrent gradient machine, * so it's should not be placed in root network. */ class BootBiasLayer : public Layer { protected: std::unique_ptr biases_; IVectorPtr cpuIds_; public: explicit BootBiasLayer(const LayerConfig& config) : Layer(config) {} bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) { if (!Layer::init(layerMap, parameterMap)) return false; if (biasParameter_) { biases_ = std::unique_ptr(new Weight(1, getSize(), biasParameter_)); } return true; } void resetHeight(int height) { if (config_.has_bos_id()) { // used as a constant id layerConfig IVector::resizeOrCreate(output_.ids, height, useGpu_); output_.ids->reset((int)config_.bos_id()); } else { resetOutput(height, getSize()); } } virtual void forward(PassType passType) { if (biases_) { MatrixPtr outV = getOutputValue(); outV->addBias(*(biases_->getW()), 1); forwardActivation(); } } virtual void backward(const UpdateCallback& callback) { if (biases_) { backwardActivation(); biases_->getWGrad()->collectBias(*getOutputGrad(), 1); biases_->getParameterPtr()->incUpdate(callback); } } }; void RecurrentGradientMachine::init( const ModelConfig& config, ParamInitCallback callback, const std::vector& parameterTypes, bool useGpu) { NeuralNetwork::init(config, callback, parameterTypes, useGpu); useGpu_ = useGpu; auto subModelConfig = std::find_if(config.sub_models().begin(), config.sub_models().end(), [this](const SubModelConfig& sub_model) { return sub_model.name() == this->subModelName_; }); CHECK(subModelConfig != config.sub_models().end()); reversed_ = subModelConfig->reversed(); inFrameLines_.resize(subModelConfig->in_links_size()); for (size_t i = 0; i < inFrameLines_.size(); ++i) { inFrameLines_[i].linkName = subModelConfig->in_links(i).link_name(); inFrameLines_[i].inLayer = rootNetwork_->getLayer(subModelConfig->in_links(i).layer_name()); inFrameLines_[i].hasSubseq = subModelConfig->in_links(i).has_subseq(); } outFrameLines_.resize(subModelConfig->out_links_size()); for (size_t i = 0; i < outFrameLines_.size(); ++i) { auto& linkPair = subModelConfig->out_links(i); outFrameLines_[i].layerName = linkPair.layer_name(); outFrameLines_[i].agentLayer = rootNetwork_->getLayer(linkPair.link_name()); } memoryFrameLines_.resize(subModelConfig->memories_size()); for (size_t i = 0; i < memoryFrameLines_.size(); ++i) { auto& memoryConfig = subModelConfig->memories(i); memoryFrameLines_[i].layerName = memoryConfig.layer_name(); memoryFrameLines_[i].linkName = memoryConfig.link_name(); auto agentConfig = std::find_if(config.layers().begin(), config.layers().end(), [&memoryConfig](const LayerConfig& layerConfig) { return layerConfig.name() == memoryConfig.link_name(); }); CHECK(agentConfig != config.layers().end()); if (memoryConfig.has_boot_layer_name()) { memoryFrameLines_[i].rootLayer = rootNetwork_->getLayer(memoryConfig.boot_layer_name()); LayerConfig scatterConfig = *agentConfig; memoryFrameLines_[i].is_sequence = memoryConfig.is_sequence(); memoryFrameLines_[i].rootAgent.reset( memoryConfig.is_sequence() ? new SequenceScatterAgentLayer(scatterConfig) : new ScatterAgentLayer(scatterConfig)); memoryFrameLines_[i].rootAgent->init(LayerMap(), parameterMap_); memoryFrameLines_[i].bootLayer = memoryFrameLines_[i].rootAgent; } else { LayerConfig biasConfig = *agentConfig; if (memoryConfig.has_boot_bias_parameter_name()) { biasConfig.set_bias_parameter_name( memoryConfig.boot_bias_parameter_name()); biasConfig.set_active_type(memoryConfig.boot_bias_active_type()); } else if (memoryConfig.has_boot_with_const_id()) { biasConfig.set_bos_id(memoryConfig.boot_with_const_id()); } memoryFrameLines_[i].biasLayer.reset(new BootBiasLayer(biasConfig)); memoryFrameLines_[i].biasLayer->init(LayerMap(), parameterMap_); memoryFrameLines_[i].bootLayer = memoryFrameLines_[i].biasLayer; } if (subModelConfig->has_generator()) { memoryFrameLines_[i].scatterAgents.resize(2); for (auto& agent : memoryFrameLines_[i].scatterAgents) { agent.reset(memoryConfig.is_sequence() ? new SequenceScatterAgentLayer(*agentConfig) : new ScatterAgentLayer(*agentConfig)); agent->init(LayerMap(), parameterMap_); } } } if (subModelConfig->has_generator()) { generator_.config = subModelConfig->generator(); eosFrameLine_.reset(new EosFrameLine); maxSequenceLength_ = generator_.config.max_num_frames(); } // get parameters actually used by this Layer Group resizeOrCreateFrames(1); for (auto& para : frames_[0]->getParameters()) { if (para->getSharedCount() > 0) { parameterIds_.push_back(para->getID()); } } for (auto& para : parameters_) { // bias layer parameters if (para->getSharedCount() > 0) { parameterIds_.push_back(para->getID()); } } if (subModelConfig->evaluator_names_size() > 0) { evaluator_.reset(frames_[0]->makeEvaluator()); } targetInfoInlinkId_ = subModelConfig->target_inlinkid(); } void RecurrentGradientMachine::resizeOrCreateFrames(int numFrames) { if ((size_t)numFrames <= frames_.size()) { return; } frames_.reserve(numFrames); for (auto& inFrameLine : inFrameLines_) { inFrameLine.agents.reserve(numFrames); } for (auto& outFrameLine : outFrameLines_) { outFrameLine.frames.reserve(numFrames); } for (auto& memoryFrameLine : memoryFrameLines_) { memoryFrameLine.frames.reserve(numFrames); memoryFrameLine.agents.reserve(numFrames); } if (eosFrameLine_) { eosFrameLine_->layers.reserve(numFrames); } ParamInitCallback subParamInitCb = [this](int paramId, Parameter* para) { para->enableSharedType(PARAMETER_VALUE, this->parameters_[paramId]->getBuf(PARAMETER_VALUE), this->parameters_[paramId]->getMat(PARAMETER_VALUE)); para->enableSharedType( PARAMETER_GRADIENT, this->parameters_[paramId]->getBuf(PARAMETER_GRADIENT), this->parameters_[paramId]->getMat(PARAMETER_GRADIENT)); }; for (int i = frames_.size(); i < numFrames; ++i) { std::unique_ptr frame( NeuralNetwork::newNeuralNetwork(subModelName_)); frame->init(config_, subParamInitCb); for (auto& inFrameLine : inFrameLines_) { inFrameLine.agents.push_back(frame->getLayer(inFrameLine.linkName)); } for (auto& outFrameLine : outFrameLines_) { outFrameLine.frames.push_back(frame->getLayer(outFrameLine.layerName)); } for (auto& memoryFrameLine : memoryFrameLines_) { memoryFrameLine.frames.push_back( frame->getLayer(memoryFrameLine.layerName)); memoryFrameLine.agents.push_back( frame->getLayer(memoryFrameLine.linkName)); } if (eosFrameLine_) { eosFrameLine_->layers.push_back( frame->getLayer(generator_.config.eos_layer_name())); } frames_.emplace_back(std::move(frame)); } } void RecurrentGradientMachine::resizeBootFrame(int numSequences) { for (auto& memoryFrameLine : memoryFrameLines_) { if (memoryFrameLine.biasLayer) { auto biasLayer = dynamic_cast(memoryFrameLine.biasLayer.get()); CHECK_NOTNULL(biasLayer); biasLayer->resetHeight(numSequences); } else { // check input root layer height CHECK_EQ(numSequences, memoryFrameLine.rootLayer->getOutput().getNumSequences()); } } } void RecurrentGradientMachine::prefetch(const std::vector& inArgs) { LOG(FATAL) << "should not use this function"; } void RecurrentGradientMachine::forward(const std::vector& inArgs, std::vector* outArgs, PassType passType) { if (inFrameLines_.empty() && passType == PASS_TEST) { generateSequence(); return; } // else forward.. const Argument& input = inFrameLines_[0].inLayer->getOutput(); CHECK(input.sequenceStartPositions); int batchSize = input.getBatchSize(); size_t numSequences = input.getNumSequences(); const int* starts = input.sequenceStartPositions->getData(false); bool hasSubseq = input.hasSubseq(); // In case of !hasSubseq or targetInfoInlinkId_ == -1, all inlinks share the // same inframe info bool shareInlinkInfo = !hasSubseq || targetInfoInlinkId_ == -1; // Defaultly, share info with the first inlink if (shareInlinkInfo) { targetInfoInlinkId_ = 0; } // check hasSubseq in both config and input are the same CHECK_EQ(hasSubseq, inFrameLines_[0].hasSubseq); CHECK_EQ(starts[numSequences], batchSize); CHECK(input.sequenceStartPositions); // check other inputs has same sequence length and start for (size_t i = 1; i < inFrameLines_.size(); ++i) { const Argument& input1 = inFrameLines_[i].inLayer->getOutput(); CHECK_EQ((size_t)input1.getNumSequences(), numSequences); // check all inputs should have same hasSubseq flag CHECK_EQ(input.hasSubseq(), inFrameLines_[0].hasSubseq); // if shareInlinkInfo, checks: // 1. all inlinks have same number of total tokens // 2. all inlinks have same number of tokens for each sentence of each // sample. If hasSubseq, one sample has multiple sentence, else, one // sample is one sentence if (shareInlinkInfo) { CHECK_EQ(input1.getBatchSize(), batchSize); CHECK(std::equal(starts, starts + numSequences + 1, input1.sequenceStartPositions->getData(false))); } } if (hasSubseq) { CHECK(input.subSequenceStartPositions); size_t numSubSequences = input.getNumSubSequences(); const int* subStarts = input.subSequenceStartPositions->getData(false); CHECK_EQ(subStarts[numSubSequences], batchSize); // if hasSubseq, check other inputs has same sub-sequence and sub-start for (size_t i = 1; i < inFrameLines_.size(); ++i) { const Argument& input1 = inFrameLines_[i].inLayer->getOutput(); CHECK_EQ((size_t)input1.getNumSubSequences(), numSubSequences); if (shareInlinkInfo) { CHECK(std::equal(subStarts, subStarts + numSubSequences + 1, input1.subSequenceStartPositions->getData(false))); } } } info_.clear(); info_.resize(inFrameLines_.size()); seqInfos_.clear(); seqInfos_.resize(inFrameLines_.size()); { AsyncGpuBlock asyncGpuBlock; // if shareInlinkInfo, only calculate info of the first inlink // else, calculate info for each inlink if (shareInlinkInfo) { input.getSeqInfo(&seqInfos_[0]); maxSequenceLength_ = seqInfos_[0][0].topLevelLength; createInFrameInfo(0, input, passType); } else { for (size_t i = 0; i < inFrameLines_.size(); i++) { const Argument& input1 = inFrameLines_[i].inLayer->getOutput(); input1.getSeqInfo(&seqInfos_[i]); maxSequenceLength_ = seqInfos_[i][0].topLevelLength; createInFrameInfo(i, input1, passType); } } // inFrameLine select rows in real layer one time for (size_t i = 0; i < inFrameLines_.size(); i++) { int curInlinkId = shareInlinkInfo ? 0 : i; selectRowsOneTime(inFrameLines_[i].inLayer, info_[curInlinkId].allIds, &(inFrameLines_[i].outArg), passType); } } resizeOrCreateFrames(maxSequenceLength_); resizeBootFrame(numSequences); for (auto& memoryFrameLine : memoryFrameLines_) { if (memoryFrameLine.rootAgent) { auto scatterAgent = dynamic_cast(memoryFrameLine.rootAgent.get()); createMemoryFrameInfo(&memoryFrameLine, passType); scatterAgent->setRealLayerAndOutput(memoryFrameLine.rootLayer, memoryFrameLine.outArg, memoryFrameLine.allIds, /* idIndex */ 0, memoryFrameLine.allIds->getSize()); if (memoryFrameLine.is_sequence) { // memoryConfig is sequence int size = memoryFrameLine.sequenceStartPositions->getSize(); scatterAgent->setSequenceStartPositions( memoryFrameLine.sequenceStartPositions, /* seqStartPosIndex */ 0, size); } } } for (auto& outFrameLine : outFrameLines_) { auto gatherAgent = dynamic_cast(outFrameLine.agentLayer.get()); CHECK_NOTNULL(gatherAgent); gatherAgent->copyIdAndSequenceInfo(input, info_[targetInfoInlinkId_].allIds, info_[targetInfoInlinkId_].idIndex); } for (int i = 0; i < maxSequenceLength_; ++i) { int idSize = 0; // connect in_links for (size_t j = 0; j < inFrameLines_.size(); ++j) { Info& info = info_[shareInlinkInfo ? 0 : j]; // idSize denotes the sum number of tokens in each length i idSize = info.idIndex[i + 1] - info.idIndex[i]; InFrameLine inFrameLine = inFrameLines_[j]; auto scatterAgent = dynamic_cast(inFrameLine.agents[i].get()); scatterAgent->setRealLayerAndOutput(inFrameLine.inLayer, inFrameLine.outArg, info.allIds, info.idIndex[i], idSize); if (hasSubseq) { // size: the length of subsequence int size = info.seqStartPosIndex[i + 1] - info.seqStartPosIndex[i]; scatterAgent->setSequenceStartPositions( info.sequenceStartPositions, info.seqStartPosIndex[i], size); } } // connect out_links for (auto& outFrameLine : outFrameLines_) { auto gatherAgent = dynamic_cast(outFrameLine.agentLayer.get()); gatherAgent->addRealLayer(outFrameLine.frames[i]); } // connect memory links // Adopt info_[0].idIndex because seq which has_subseq=True // doesn't support Memory with !hasSubseq bootlayer; // And inlinks that !hasSubSeq must have same inlink length. idSize = info_[0].idIndex[i + 1] - info_[0].idIndex[i]; for (auto& memoryFrameLine : memoryFrameLines_) { NeuralNetwork::connect( memoryFrameLine.agents[i], i == 0 ? memoryFrameLine.bootLayer : memoryFrameLine.frames[i - 1], numSeqs_[i] /*height of agent*/); } } REGISTER_TIMER_INFO("RecurrentFwTime", "RecurrentFwTime"); // forward for (auto& memoryFrameLine : memoryFrameLines_) { memoryFrameLine.bootLayer->forward(passType); } for (int i = 0; i < maxSequenceLength_; ++i) { const std::vector inArgs; std::vector outArgs; frames_[i]->forward(inArgs, &outArgs, passType); if (hasSubseq) { for (auto& outFrameLine : outFrameLines_) { CHECK(outFrameLine.frames[i]->getOutput().sequenceStartPositions) << "In hierachical RNN, all out links should be from sequences."; } } } if (evaluator_ && passType == PASS_TEST) { this->eval(evaluator_.get()); } } void RecurrentGradientMachine::backward(const UpdateCallback& callback) { REGISTER_TIMER_INFO("RecurrentBwTime", "RecurrentBwTime"); AsyncGpuBlock asyncGpuBlock; for (int i = maxSequenceLength_ - 1; i >= 0; --i) { frames_[i]->backward(nullptr); } for (auto& memoryFrameLine : memoryFrameLines_) { memoryFrameLine.bootLayer->backward(nullptr); } // call printers here so the gradient can be printed if (evaluator_) { this->eval(evaluator_.get()); } } void RecurrentGradientMachine::forwardBackward( const std::vector& inArgs, std::vector* outArgs, PassType passType, const UpdateCallback& callback) { LOG(FATAL) << "should not use this function"; } void RecurrentGradientMachine::eval(Evaluator* evaluator) { // call printers frame by frame for (int i = 0; i < maxSequenceLength_; ++i) { LOG(INFO) << "Recurrent Layer Group eval frame " << i << " begin"; evaluator->eval(*(frames_[i].get())); LOG(INFO) << "Recurrent Layer Group eval frame " << i << " end"; } } void RecurrentGradientMachine::registerBeamSearchControlCallbacks( const BeamSearchCandidatesAdjustCallback& adjustBeamSearch, const NormOrDropNodeCallback& normOrDropNode, const DropCallback& stopBeamSearch) { this->removeBeamSearchControlCallbacks(); //! for gcc 46, aggregate initialization is not supported. TAT this->beamSearchCtrlCallbacks_ = new BeamSearchControlCallbacks( adjustBeamSearch, normOrDropNode, stopBeamSearch); } void RecurrentGradientMachine::removeBeamSearchControlCallbacks() { if (this->beamSearchCtrlCallbacks_) { delete this->beamSearchCtrlCallbacks_; this->beamSearchCtrlCallbacks_ = nullptr; } } void RecurrentGradientMachine::registerBeamSearchStatisticsCallbacks( const EachStepCallback& onEachStepStarted, const EachStepCallback& onEachStepStoped) { this->removeBeamSearchStatisticsCallbacks(); this->beamSearchStatistics_ = new BeamSearchStatisticsCallbacks(onEachStepStarted, onEachStepStoped); } void RecurrentGradientMachine::removeBeamSearchStatisticsCallbacks() { if (this->beamSearchStatistics_) { delete this->beamSearchStatistics_; this->beamSearchStatistics_ = nullptr; } } /* create scattered id infomation for all realLayer of inFrameLines one time. * If hasSubseq, will also create scattered sequenceStartPositions infomation * for all realLayer of inFrameLines one time. */ void RecurrentGradientMachine::createInFrameInfo(int inlinkId, const Argument& input, PassType passType) { bool hasSubseq = input.hasSubseq(); // numSequences: # samples(sequences) in a batch size_t numSequences = input.getNumSequences(); std::vector allIds; auto& seqInfo = seqInfos_[inlinkId]; numSeqs_.clear(); Info* inlinkInfo = &info_[inlinkId]; inlinkInfo->idIndex.clear(); inlinkInfo->idIndex.push_back(0); // first idIndex = 0 std::vector sequenceStartPositions; const int* subSequenceStartPositions = nullptr; if (hasSubseq) { // for sequenceScatterAgentLayer subSequenceStartPositions = input.subSequenceStartPositions->getData(false); inlinkInfo->seqStartPosIndex.clear(); inlinkInfo->seqStartPosIndex.push_back(0); // first seqStartPosIndex = 0 } // maxSequenceLength_: max topLevelLength in allsamples for (int i = 0; i < maxSequenceLength_; ++i) { if (hasSubseq) { sequenceStartPositions.push_back(0); // first element = 0 } int numSeqs = 0; for (size_t j = 0; j < numSequences; ++j) { int seqLength = seqInfo[j].topLevelLength; if (i >= seqLength) { break; } ++numSeqs; if (hasSubseq) { int subSeqStart = subSequenceStartPositions[seqInfo[j].subSeqStart + i]; int subSeqEnd = subSequenceStartPositions[seqInfo[j].subSeqStart + i + 1]; for (int k = subSeqStart; k < subSeqEnd; ++k) { allIds.push_back(k); } sequenceStartPositions.push_back(sequenceStartPositions.back() + subSeqEnd - subSeqStart); } else { int seqStart = seqInfo[j].seqStart; allIds.push_back(reversed_ ? (seqStart + seqLength - 1 - i) : (seqStart + i)); } } inlinkInfo->idIndex.push_back(allIds.size()); numSeqs_.push_back(numSeqs); if (hasSubseq) { inlinkInfo->seqStartPosIndex.push_back(sequenceStartPositions.size()); } } if (hasSubseq) { // inFrameLine create sequenceStartPositions one time CHECK_EQ( sequenceStartPositions.size(), static_cast(maxSequenceLength_ + input.getNumSubSequences())); CHECK_EQ(inlinkInfo->seqStartPosIndex.size(), static_cast(maxSequenceLength_ + 1)); createSeqPos(sequenceStartPositions, &inlinkInfo->sequenceStartPositions); } // copy and check scatterId copyScattedId(allIds, &inlinkInfo->allIds, input.getBatchSize()); CHECK_EQ(inlinkInfo->idIndex.size(), static_cast(maxSequenceLength_ + 1)); } /* like createInFrameInfo, but for all realLayer of memoryFrameLines*/ void RecurrentGradientMachine::createMemoryFrameInfo( MemoryFrameLine* memoryFrameLine, PassType passType) { const Argument& input = (*memoryFrameLine).rootLayer->getOutput(); size_t numSequences = input.getNumSequences(); std::vector allIds; bool seqFlag = (*memoryFrameLine).is_sequence; if (seqFlag) { // for sequenceScatterAgentLayer CHECK(input.sequenceStartPositions) << "boot layer must be a sequence when is_sequence = true"; std::vector sequenceStartPositions; sequenceStartPositions.push_back(0); // first element = 0 const int* starts = input.sequenceStartPositions->getData(false); for (size_t i = 0; i < numSequences; ++i) { // memory info adopt info of inlinks[0] int seqId = seqInfos_[0][i].seqId; for (int k = starts[seqId]; k < starts[seqId + 1]; ++k) { allIds.push_back(k); } sequenceStartPositions.push_back(sequenceStartPositions.back() + starts[seqId + 1] - starts[seqId]); } createSeqPos(sequenceStartPositions, &(*memoryFrameLine).sequenceStartPositions); } else { // for scatterAgentLayer for (size_t i = 0; i < numSequences; ++i) { allIds.push_back(seqInfos_[0][i].seqId); } } // copy and check scatterId copyScattedId(allIds, &(*memoryFrameLine).allIds, input.getBatchSize()); // memoryFrameLine select rows in real layer one time selectRowsOneTime((*memoryFrameLine).rootLayer, (*memoryFrameLine).allIds, &(*memoryFrameLine).outArg, passType); } void RecurrentGradientMachine::copyScattedId(std::vector& srcIds, IVectorPtr* dstIds, int size) { int idSize = srcIds.size(); CHECK_EQ(idSize, size); IVector::resizeOrCreate(*dstIds, idSize, useGpu_); (*dstIds)->copyFrom(srcIds.data(), idSize); // check std::sort(srcIds.begin(), srcIds.end()); for (int i = 0; i < idSize; ++i) { CHECK_EQ(srcIds[i], i); } } void RecurrentGradientMachine::selectRowsOneTime(LayerPtr layer, const IVectorPtr& allIds, Argument* arg, PassType passType) { Argument& src = layer->getOutput(); if (src.value) { const MatrixPtr& realV = src.value; int height = realV->getHeight(); int width = realV->getWidth(); Matrix::resizeOrCreate( arg->value, height, width, /* trans */ false, useGpu_); arg->value->zeroMem(); arg->value->selectRows(*realV, *allIds); if (passType != PASS_TEST) { Matrix::resizeOrCreate( arg->grad, height, width, /* trans */ false, useGpu_); arg->grad->zeroMem(); } } if (src.ids) { IVector::resizeOrCreate(arg->ids, src.ids->getSize(), useGpu_); arg->ids->selectFrom(*src.ids, *allIds); } } void RecurrentGradientMachine::createSeqPos( const std::vector& sequenceStartPosition, ICpuGpuVectorPtr* sequenceStartPositions) { int size = sequenceStartPosition.size(); const int* data = sequenceStartPosition.data(); ICpuGpuVector::resizeOrCreate(*sequenceStartPositions, size, false); (*sequenceStartPositions)->copyFrom(data, size, false); } size_t RecurrentGradientMachine::getGenBatchSize() { size_t numSequences = 0; for (auto& memoryFrameLine : memoryFrameLines_) { if (!memoryFrameLine.rootLayer) continue; Argument& bootArg = memoryFrameLine.rootLayer->getOutput(); size_t batchSize = memoryFrameLine.is_sequence ? bootArg.getNumSequences() : bootArg.getBatchSize(); if (numSequences) { CHECK_EQ(numSequences, batchSize); } else { numSequences = batchSize; } } CHECK(numSequences) << "Fail to get batch size in generation. " "At least one of the Memory layer MUST have a layer that is NOT in " "the layer group to boot it, and this boot layer is used to " "decide batch_size in generation process."; return numSequences; } void RecurrentGradientMachine::generateSequence() { CHECK_NOTNULL(eosFrameLine_.get()); CHECK_GE(outFrameLines_.size(), 1UL); size_t numSequences = getGenBatchSize(); resizeBootFrame(numSequences); // We create only two sub-network in generation for alternate use. // Thus, we can reduce total memory of output_ in layer forward. resizeOrCreateFrames(2); // outFrameLines_.size() > 1UL dataArgsSize_ = outFrameLines_.size() - 1; dataArgs_.resize(dataArgsSize_); dataArgsFrame_.clear(); dataArgsFrame_.resize(dataArgsSize_); // connect boot frame memory links std::vector ids(numSequences); for (size_t i = 0; i < numSequences; ++i) { ids[i] = i; } for (auto& memoryFrameLine : memoryFrameLines_) { if (memoryFrameLine.rootAgent) { auto scatterAgent = dynamic_cast(memoryFrameLine.rootAgent.get()); bool seqFlag = memoryFrameLine.is_sequence; scatterAgent->setRealLayer(memoryFrameLine.rootLayer, ids, seqFlag); if (seqFlag) { CHECK(memoryFrameLine.rootLayer->getOutput().sequenceStartPositions) << "boot layer must be a sequence when is_sequence = true"; } } NeuralNetwork::connect( memoryFrameLine.agents[0], memoryFrameLine.bootLayer, ids.size()); } // boot layer forward AsyncGpuBlock asyncGpuBlock; for (auto& memoryFrameLine : memoryFrameLines_) { memoryFrameLine.bootLayer->forward(PASS_TEST); } // init outArg size_t resultNum = generator_.config.num_results_per_sample(); IVector::resizeOrCreate( generator_.outArg.ids, generator_.config.max_num_frames() * numSequences * resultNum, false); if (resultNum > 1) { CHECK_LE(resultNum, static_cast(generator_.config.beam_size())); Matrix::resizeOrCreate(generator_.outArg.in, /* height */ numSequences, /* width */ resultNum, false, /* useGpu */ false); } ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions, numSequences + 1, /* useGpu */ false); if (getBeamSize() > 1) { beamSearch(numSequences); } else { oneWaySearch(numSequences); } if (dataArgsSize_) createDataOutlink(batchMachineIdVec_); size_t size = generator_.ids.size(); generator_.outArg.ids->resize(size); generator_.outArg.ids->copyFrom(generator_.ids.data(), size); OutFrameLine& outFrameLine = outFrameLines_[0]; auto dataAgent = dynamic_cast(outFrameLine.agentLayer.get()); CHECK_NOTNULL(dataAgent); dataAgent->setData(generator_.outArg); dataAgent->prefetch(); } void RecurrentGradientMachine::oneWaySearch(size_t batchSize) { OutFrameLine& outFrameLine = outFrameLines_[0]; // finalPaths_[0] stores the generated results of the // entire batch, so its size exactly equals to batchSize. finalPaths_.clear(); finalPaths_.resize(1); std::vector& finalPaths = finalPaths_[0]; finalPaths.resize(batchSize); seqIds_.resize(batchSize); std::vector scatterIds; for (size_t i = 0; i < batchSize; ++i) { finalPaths[i].seqId = i; seqIds_[i] = i; } // forward for (int i = 0; i < maxSequenceLength_; ++i) { if (i && scatterIds.empty()) break; int machineCur = i % 2; int machinePrev = (i - 1) % 2; // connect memory links if (i) { seqIds_.clear(); for (size_t j = 0; j < batchSize; ++j) { if (finalPaths[j].seqId != -1) seqIds_.push_back(j); } for (auto& memoryFrameLine : memoryFrameLines_) { auto scatterAgent = dynamic_cast( memoryFrameLine.scatterAgents[machineCur].get()); scatterAgent->setRealLayer(memoryFrameLine.frames[machinePrev], scatterIds, memoryFrameLine.is_sequence); scatterAgent->forward(PASS_TEST); NeuralNetwork::connect(memoryFrameLine.agents[machineCur], memoryFrameLine.scatterAgents[machineCur]); } } const std::vector inArgs; std::vector outArgs; frames_[machineCur]->forward(inArgs, &outArgs, PASS_TEST); const IVectorPtr& idVec = outFrameLine.frames[machineCur]->getOutput().ids; for (size_t j = 0; j < seqIds_.size(); ++j) { finalPaths[seqIds_[j]].ids.push_back(idVec->getElement(j)); finalPaths[seqIds_[j]].machineIdVec.push_back(j); } copyDataOutlinkFrame(machineCur); // call value printer if (evaluator_) { evaluator_->eval(*(frames_[machineCur].get())); } // check eos const IVectorPtr& eosVec = eosFrameLine_->layers[machineCur]->getOutput().ids; scatterIds.clear(); for (size_t j = 0; j < seqIds_.size(); ++j) { if (eosVec->getElement(j) == 1U) { // path.seqId = -1 indicates end of generation // of an input sequence finalPaths[seqIds_[j]].seqId = -1; } else { scatterIds.push_back(j); } } } batchMachineIdVec_.clear(); int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false); starts[0] = 0; generator_.ids.clear(); for (size_t i = 0; i < batchSize; ++i) { generator_.ids.insert(generator_.ids.end(), finalPaths[i].ids.begin(), finalPaths[i].ids.end()); starts[i + 1] = generator_.ids.size(); batchMachineIdVec_.insert(batchMachineIdVec_.end(), finalPaths[i].machineIdVec.begin(), finalPaths[i].machineIdVec.end()); } } void RecurrentGradientMachine::connectPrevFrame(int stepId, std::vector& paths) { int machineCur = stepId % 2; int machinePrev = (stepId - 1) % 2; int beam = getBeamSize(); machineIds_.clear(); topIds_.clear(); seqIds_.clear(); for (size_t j = 0; j < paths.size(); ++j) { machineIds_.push_back(paths[j].machineId); topIds_.push_back(paths[j].machineId * beam + paths[j].topIndex); seqIds_.push_back(paths[j].seqId); } for (auto& memoryFrameLine : memoryFrameLines_) { bool isOutIds = (memoryFrameLine.layerName == outFrameLines_[0].layerName); auto scatterAgent = dynamic_cast( memoryFrameLine.scatterAgents[machineCur].get()); scatterAgent->setRealLayer(memoryFrameLine.frames[machinePrev], isOutIds ? topIds_ : machineIds_, memoryFrameLine.is_sequence); scatterAgent->forward(PASS_TEST); NeuralNetwork::connect(memoryFrameLine.agents[machineCur], memoryFrameLine.scatterAgents[machineCur]); } } void RecurrentGradientMachine::forwardFrame(int machineCur) { // forward const std::vector inArgs; std::vector outArgs; frames_[machineCur]->forward(inArgs, &outArgs, PASS_TEST); copyDataOutlinkFrame(machineCur); IVectorPtr& ids = outFrameLines_[0].frames[machineCur]->getOutput().ids; MatrixPtr in = outFrameLines_[0].frames[machineCur]->getOutput().in; IVectorPtr& eos = eosFrameLine_->layers[machineCur]->getOutput().ids; if (useGpu_) { IVector::resizeOrCreate(cpuId_, ids->getSize(), false /* useGpu */); cpuId_->copyFrom(*ids); Matrix::resizeOrCreate(cpuProb_, in->getHeight(), in->getWidth(), false /* trans */, false /* useGpu */); cpuProb_->copyFrom(*in); IVector::resizeOrCreate(cpuEos_, eos->getSize(), false /* useGpu */); cpuEos_->copyFrom(*eos); } else { cpuId_ = ids; cpuProb_ = in; cpuEos_ = eos; } } void RecurrentGradientMachine::singlePathExpand(Path& curPath, size_t curPathId, std::vector& newPaths, size_t expandWidth) { int calc_id = gDiyProbStart ? gDiyProbStart(curPath.ids.size(), curPath.ids.data()) : 0; const int* idVec = cpuId_->getData(); const real* probMat = cpuProb_->getData(); const int* eosVec = cpuEos_->getData(); for (size_t k = 0; k < expandWidth; k++) { int index = curPathId * expandWidth + k; int id = idVec[index]; real prob = probMat[index]; /* * Ordinarily, beam search greedily expands the most promising expandWidth * paths that currently are ALWAYS returned by MaxIdLayer. * In one condition, if user customizes the beam search procedure by * restricting the expansion within a user defined subset, * as a result, MaxIdLayer possibly COULD NOT return expandWidth * vaild expansions, and it will use -1 to indicate the end of valid * expansion candidates. */ if (id == -1) break; real newLogProb = generator_.config.log_prob() ? std::log(prob) : prob; Path newPath( curPath, id, newLogProb, curPathId /*machineId*/, k /*topIndex*/); if (this->beamSearchCtrlCallbacks_) { if (beamSearchCtrlCallbacks_->stopDetermineCandidates( newPath.seqId, newPath.ids, newPath.probHistory)) return; } // outFrameLines_.size() > 1UL if (dataArgsSize_) { newPath.machineIdVec = curPath.machineIdVec; newPath.machineIdVec.push_back(curPathId); } bool atEos = eosVec[index] == 1U || newPath.ids.size() >= (size_t)maxSequenceLength_; // adjustNewPath newPath.adjustProb(calc_id, atEos); if (this->beamSearchCtrlCallbacks_) { this->beamSearchCtrlCallbacks_->normOrDropNode( newPath.seqId, newPath.ids, newPath.probHistory, &newPath.logProb); } if (!newPath.isDropable()) { atEos ? finalPaths_[curPath.seqId].push_back(newPath) : newPaths.push_back(newPath); } } // for expandWidth if (gDiyProbStop) { gDiyProbStop(calc_id); } } void RecurrentGradientMachine::beamExpand(std::vector& paths, std::vector& newPaths) { size_t candidatePathCount = paths.size(); // idVec.size() could be larger than candidatePathCount * beam, // so user can drop some node customly. CHECK_EQ(cpuId_->getSize() % candidatePathCount, 0UL); size_t expandWidth = cpuId_->getSize() / candidatePathCount; // iterate over each sequence size_t totalExpandCount = 0; int prevSeqId = -1; int curSeqId = 0; for (size_t j = 0; j <= candidatePathCount; j++) { // expansions of a single sequence are all processed curSeqId = (j < candidatePathCount ? paths[j].seqId : curSeqId + 1); if (prevSeqId != -1 && curSeqId != prevSeqId) { totalExpandCount += beamShrink(newPaths, prevSeqId, totalExpandCount); } if (j == candidatePathCount) return; singlePathExpand(paths[j], j, newPaths, expandWidth); prevSeqId = paths[j].seqId; } // for paths } // Drop extra nodes to beam size. size_t RecurrentGradientMachine::beamShrink(std::vector& newPaths, size_t seqId, size_t totalExpandCount) { size_t minNewPathSize = std::min(getBeamSize(), newPaths.size() - totalExpandCount); if (!minNewPathSize) { return 0; } std::nth_element(newPaths.begin() + totalExpandCount, newPaths.begin() + totalExpandCount + minNewPathSize, newPaths.end(), Path::greaterPath); newPaths.resize(totalExpandCount + minNewPathSize); real minPathLogProb = std::min_element(newPaths.end() - minNewPathSize, newPaths.end()) ->logProb; real maxPathLogProb = std::max_element(newPaths.end() - minNewPathSize, newPaths.end()) ->logProb; // Remove the already formed paths that are relatively short finalPaths_[seqId].erase( std::remove_if(finalPaths_[seqId].begin(), finalPaths_[seqId].end(), [&](Path& p) { return p.logProb < minPathLogProb; }), finalPaths_[seqId].end()); for (auto p : finalPaths_[seqId]) { if (minFinalPathLogProb_[seqId] > p.logProb) { minFinalPathLogProb_[seqId] = p.logProb; } } if (finalPaths_[seqId].size() >= getBeamSize() && minFinalPathLogProb_[seqId] >= maxPathLogProb) { newPaths.resize(totalExpandCount); return 0; } return minNewPathSize; } void RecurrentGradientMachine::fillGenOutputs() { size_t numResults = generator_.config.num_results_per_sample(); for (size_t i = 0; i < finalPaths_.size(); ++i) { size_t minFinalPathsSize = std::min(numResults, finalPaths_[i].size()); std::partial_sort(finalPaths_[i].begin(), finalPaths_[i].begin() + minFinalPathsSize, finalPaths_[i].end(), Path::greaterPath); finalPaths_[i].resize(minFinalPathsSize); } batchMachineIdVec_.clear(); generator_.ids.clear(); if (numResults > 1) { real* probs = generator_.outArg.in->getData(); int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false); starts[0] = 0; for (size_t i = 0; i < finalPaths_.size(); ++i) { for (size_t j = 0; j < finalPaths_[i].size(); ++j) { Path& path = finalPaths_[i][j]; generator_.ids.push_back(path.ids.size()); // sequence size generator_.ids.insert( generator_.ids.end(), path.ids.begin(), path.ids.end()); generator_.ids.push_back(-1); // end of sequence probs[i * numResults + j] = path.logProb; if (!j && dataArgsSize_) { // in beam search, here only reserved the top 1 generated result // for out_links that are not the generated word indices. batchMachineIdVec_.insert(batchMachineIdVec_.end(), path.machineIdVec.begin(), path.machineIdVec.end()); } } starts[i + 1] = generator_.ids.size(); } } else { for (size_t i = 0; i < finalPaths_.size(); ++i) { CHECK(!finalPaths_[i].empty()); generator_.ids = finalPaths_[i][0].ids; } } } void RecurrentGradientMachine::copyDataOutlinkFrame(size_t machineCur) { for (size_t i = 0; i < dataArgsSize_; i++) { Argument outFrame; outFrame.resizeAndCopyFrom( outFrameLines_[i + 1].frames[machineCur]->getOutput(), useGpu_); dataArgsFrame_[i].emplace_back(outFrame); } } void RecurrentGradientMachine::createDataOutlink( std::vector& machineIdVec) { size_t seqNum = getBeamSize() > 1UL ? finalPaths_.size() : finalPaths_[0].size(); std::vector starts(seqNum + 1, 0); for (size_t i = 0; i < seqNum; ++i) { size_t seqLen = getBeamSize() > 1UL ? finalPaths_[i][0].ids.size() : finalPaths_[0][i].ids.size(); starts[i + 1] = starts[i] + seqLen; } for (size_t i = 0; i < dataArgsSize_; i++) { dataArgs_[i].concat(dataArgsFrame_[i], machineIdVec, starts, useGpu_, HPPL_STREAM_1, PASS_TEST); auto dataAgent = dynamic_cast(outFrameLines_[i + 1].agentLayer.get()); CHECK_NOTNULL(dataAgent); dataAgent->setData(dataArgs_[i]); } } void RecurrentGradientMachine::beamSearch(size_t batchSize) { finalPaths_.clear(); finalPaths_.resize(batchSize); seqIds_.resize(batchSize); minFinalPathLogProb_.clear(); minFinalPathLogProb_.resize(batchSize, 0); std::vector paths; std::vector newPaths; for (size_t i = 0; i < batchSize; ++i) { paths.push_back(Path(i)); if (this->beamSearchCtrlCallbacks_) { paths.back().recordHistory(); } } // restart beam search stopBeamSearch_ = false; for (int i = 0; i < maxSequenceLength_; ++i) { int machineCur = i % 2; std::unique_ptr< ScopedCallbacks> statisticsBlock; if (this->beamSearchStatistics_) { auto ptr = new ScopedCallbacks(beamSearchStatistics_->onEachStepStarted, beamSearchStatistics_->onEachStepStoped, i); statisticsBlock.reset(ptr); } if (stopBeamSearch_) break; if (i) connectPrevFrame(i, paths); if (this->beamSearchCtrlCallbacks_) { std::vector*> prefixes; prefixes.resize(paths.size()); std::transform( paths.begin(), paths.end(), prefixes.begin(), [](const Path& p) { return const_cast*>(&p.ids); }); beamSearchCtrlCallbacks_->beamSearchCandidateAdjust( prefixes, frames_[machineCur].get(), i); } forwardFrame(machineCur); beamExpand(paths, newPaths); if (newPaths.empty()) break; paths = newPaths; newPaths.clear(); } // end for machineCur fillGenOutputs(); } void RecurrentGradientMachine::Path::adjustProb(int calc_id, bool atEos) { if (gDiyProbMethod) { logProb = gDiyProbMethod(calc_id, ids.size(), ids.data(), logProb, atEos); } } } // namespace paddle