# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from paddle.fluid.data_feeder import check_type, convert_dtype from ..framework import core __all__ = [] class PrintOptions: precision = 8 threshold = 1000 edgeitems = 3 linewidth = 80 sci_mode = False DEFAULT_PRINT_OPTIONS = PrintOptions() def set_printoptions( precision=None, threshold=None, edgeitems=None, sci_mode=None, linewidth=None, ): """Set the printing options for Tensor. Args: precision (int, optional): Number of digits of the floating number, default 8. threshold (int, optional): Total number of elements printed, default 1000. edgeitems (int, optional): Number of elements in summary at the beginning and ending of each dimension, default 3. sci_mode (bool, optional): Format the floating number with scientific notation or not, default False. linewidth (int, optional): Number of characters each line, default 80. Returns: None. Examples: .. code-block:: python import paddle paddle.seed(10) a = paddle.rand([10, 20]) paddle.set_printoptions(4, 100, 3) print(a) ''' Tensor(shape=[10, 20], dtype=float32, place=CUDAPlace(0), stop_gradient=True, [[0.0002, 0.8503, 0.0135, ..., 0.9508, 0.2621, 0.6661], [0.9710, 0.2605, 0.9950, ..., 0.4427, 0.9241, 0.9363], [0.0948, 0.3226, 0.9955, ..., 0.1198, 0.0889, 0.9231], ..., [0.7206, 0.0941, 0.5292, ..., 0.4856, 0.1379, 0.0351], [0.1745, 0.5621, 0.3602, ..., 0.2998, 0.4011, 0.1764], [0.0728, 0.7786, 0.0314, ..., 0.2583, 0.1654, 0.0637]]) ''' """ kwargs = {} if precision is not None: check_type(precision, 'precision', (int), 'set_printoptions') DEFAULT_PRINT_OPTIONS.precision = precision kwargs['precision'] = precision if threshold is not None: check_type(threshold, 'threshold', (int), 'set_printoptions') DEFAULT_PRINT_OPTIONS.threshold = threshold kwargs['threshold'] = threshold if edgeitems is not None: check_type(edgeitems, 'edgeitems', (int), 'set_printoptions') DEFAULT_PRINT_OPTIONS.edgeitems = edgeitems kwargs['edgeitems'] = edgeitems if linewidth is not None: check_type(linewidth, 'linewidth', (int), 'set_printoptions') DEFAULT_PRINT_OPTIONS.linewidth = linewidth kwargs['linewidth'] = linewidth if sci_mode is not None: check_type(sci_mode, 'sci_mode', (bool), 'set_printoptions') DEFAULT_PRINT_OPTIONS.sci_mode = sci_mode kwargs['sci_mode'] = sci_mode core.set_printoptions(**kwargs) def _to_summary(var): edgeitems = DEFAULT_PRINT_OPTIONS.edgeitems # Handle tensor of shape contains 0, like [0, 2], [3, 0, 3] if np.prod(var.shape) == 0: return np.array([]) if len(var.shape) == 0: return var elif len(var.shape) == 1: if var.shape[0] > 2 * edgeitems: return np.concatenate([var[:edgeitems], var[(-1 * edgeitems) :]]) else: return var else: # recursively handle all dimensions if var.shape[0] > 2 * edgeitems: begin = [x for x in var[:edgeitems]] end = [x for x in var[(-1 * edgeitems) :]] return np.stack([_to_summary(x) for x in (begin + end)]) else: return np.stack([_to_summary(x) for x in var]) def _format_item(np_var, max_width=0, signed=False): if ( np_var.dtype == np.float32 or np_var.dtype == np.float64 or np_var.dtype == np.float16 ): if DEFAULT_PRINT_OPTIONS.sci_mode: item_str = '{{:.{}e}}'.format( DEFAULT_PRINT_OPTIONS.precision ).format(np_var) elif np.ceil(np_var) == np_var: item_str = '{:.0f}.'.format(np_var) else: item_str = '{{:.{}f}}'.format( DEFAULT_PRINT_OPTIONS.precision ).format(np_var) else: item_str = '{}'.format(np_var) if max_width > len(item_str): if signed: # handle sign character for tenosr with negative item if np_var < 0: return item_str.ljust(max_width) else: return ' ' + item_str.ljust(max_width - 1) else: return item_str.ljust(max_width) else: # used for _get_max_width return item_str def _get_max_width(var): # return max_width for a scalar max_width = 0 signed = False for item in list(var.flatten()): if (not signed) and (item < 0): signed = True item_str = _format_item(item) max_width = max(max_width, len(item_str)) return max_width, signed def _format_tensor(var, summary, indent=0, max_width=0, signed=False): """ Format a tensor Args: var(Tensor): The tensor to be formatted. summary(bool): Do summary or not. If true, some elements will not be printed, and be replaced with "...". indent(int): The indent of each line. max_width(int): The max width of each elements in var. signed(bool): Print +/- or not. """ edgeitems = DEFAULT_PRINT_OPTIONS.edgeitems linewidth = DEFAULT_PRINT_OPTIONS.linewidth if len(var.shape) == 0: # currently, shape = [], i.e., scaler tensor is not supported. # If it is supported, it should be formatted like this. return _format_item(var, max_width, signed) elif len(var.shape) == 1: item_length = max_width + 2 items_per_line = (linewidth - indent) // item_length items_per_line = max(1, items_per_line) if summary and var.shape[0] > 2 * edgeitems: items = ( [ _format_item(item, max_width, signed) for item in list(var)[:edgeitems] ] + ['...'] + [ _format_item(item, max_width, signed) for item in list(var)[(-1 * edgeitems) :] ] ) else: items = [ _format_item(item, max_width, signed) for item in list(var) ] lines = [ items[i : i + items_per_line] for i in range(0, len(items), items_per_line) ] s = (',\n' + ' ' * (indent + 1)).join( [', '.join(line) for line in lines] ) return '[' + s + ']' else: # recursively handle all dimensions if summary and var.shape[0] > 2 * edgeitems: vars = ( [ _format_tensor(x, summary, indent + 1, max_width, signed) for x in var[:edgeitems] ] + ['...'] + [ _format_tensor(x, summary, indent + 1, max_width, signed) for x in var[(-1 * edgeitems) :] ] ) else: vars = [ _format_tensor(x, summary, indent + 1, max_width, signed) for x in var ] return ( '[' + (',' + '\n' * (len(var.shape) - 1) + ' ' * (indent + 1)).join( vars ) + ']' ) def to_string(var, prefix='Tensor'): indent = len(prefix) + 1 dtype = convert_dtype(var.dtype) if var.dtype == core.VarDesc.VarType.BF16: dtype = 'bfloat16' _template = "{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient},\n{indent}{data})" tensor = var.value().get_tensor() if not tensor._is_initialized(): return "Tensor(Not initialized)" if var.dtype == core.VarDesc.VarType.BF16: var = var.astype('float32') np_var = var.numpy() if len(var.shape) == 0: size = 0 else: size = 1 for dim in var.shape: size *= dim summary = False if size > DEFAULT_PRINT_OPTIONS.threshold: summary = True max_width, signed = _get_max_width(_to_summary(np_var)) data = _format_tensor( np_var, summary, indent=indent, max_width=max_width, signed=signed ) return _template.format( prefix=prefix, shape=var.shape, dtype=dtype, place=var._place_str, stop_gradient=var.stop_gradient, indent=' ' * indent, data=data, ) def _format_dense_tensor(tensor, indent): if tensor.dtype == core.VarDesc.VarType.BF16: tensor = tensor.astype('float32') np_tensor = tensor.numpy() if len(tensor.shape) == 0: size = 0 else: size = 1 for dim in tensor.shape: size *= dim sumary = False if size > DEFAULT_PRINT_OPTIONS.threshold: sumary = True max_width, signed = _get_max_width(_to_summary(np_tensor)) data = _format_tensor( np_tensor, sumary, indent=indent, max_width=max_width, signed=signed ) return data def sparse_tensor_to_string(tensor, prefix='Tensor'): indent = len(prefix) + 1 if tensor.is_sparse_coo(): _template = "{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient}, \n{indent}{indices}, \n{indent}{values})" indices_tensor = tensor.indices() values_tensor = tensor.values() indices_data = 'indices=' + _format_dense_tensor( indices_tensor, indent + len('indices=') ) values_data = 'values=' + _format_dense_tensor( values_tensor, indent + len('values=') ) return _template.format( prefix=prefix, shape=tensor.shape, dtype=tensor.dtype, place=tensor._place_str, stop_gradient=tensor.stop_gradient, indent=' ' * indent, indices=indices_data, values=values_data, ) else: _template = "{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient}, \n{indent}{crows}, \n{indent}{cols}, \n{indent}{values})" crows_tensor = tensor.crows() cols_tensor = tensor.cols() elements_tensor = tensor.values() crows_data = 'crows=' + _format_dense_tensor( crows_tensor, indent + len('crows=') ) cols_data = 'cols=' + _format_dense_tensor( cols_tensor, indent + len('cols=') ) values_data = 'values=' + _format_dense_tensor( elements_tensor, indent + len('values=') ) return _template.format( prefix=prefix, shape=tensor.shape, dtype=tensor.dtype, place=tensor._place_str, stop_gradient=tensor.stop_gradient, indent=' ' * indent, crows=crows_data, cols=cols_data, values=values_data, ) def tensor_to_string(tensor, prefix='Tensor'): indent = len(prefix) + 1 dtype = convert_dtype(tensor.dtype) if tensor.dtype == core.VarDesc.VarType.BF16: dtype = 'bfloat16' _template = "{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient},\n{indent}{data})" if tensor.is_sparse(): return sparse_tensor_to_string(tensor, prefix) if not tensor._is_dense_tensor_hold_allocation(): return "Tensor(Not initialized)" else: data = _format_dense_tensor(tensor, indent) return _template.format( prefix=prefix, shape=tensor.shape, dtype=dtype, place=tensor._place_str, stop_gradient=tensor.stop_gradient, indent=' ' * indent, data=data, )