# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file contains some common interfaces for image preprocess. Many users are confused about the image layout. We introduce the image layout as follows. - CHW Layout - The abbreviations: C=channel, H=Height, W=Width - The default layout of image opened by cv2 or PIL is HWC. PaddlePaddle only supports the CHW layout. And CHW is simply a transpose of HWC. It must transpose the input image. - Color format: RGB or BGR OpenCV use BGR color format. PIL use RGB color format. Both formats can be used for training. Noted that, the format should be keep consistent between the training and inference peroid. """ import numpy as np try: import cv2 except ImportError: cv2 = None import os import tarfile import cPickle __all__ = [ "load_image_bytes", "load_image", "resize_short", "to_chw", "center_crop", "random_crop", "left_right_flip", "simple_transform", "load_and_transform", "batch_images_from_tar" ] def batch_images_from_tar(data_file, dataset_name, img2label, num_per_batch=1024): """ Read images from tar file and batch them into batch file. :param data_file: path of image tar file :type data_file: string :param dataset_name: 'train','test' or 'valid' :type dataset_name: string :param img2label: a dic with image file name as key and image's label as value :type img2label: dic :param num_per_batch: image number per batch file :type num_per_batch: int :return: path of list file containing paths of batch file :rtype: string """ batch_dir = data_file + "_batch" out_path = "%s/%s" % (batch_dir, dataset_name) meta_file = "%s/%s.txt" % (batch_dir, dataset_name) if os.path.exists(out_path): return meta_file else: os.makedirs(out_path) tf = tarfile.open(data_file) mems = tf.getmembers() data = [] labels = [] file_id = 0 for mem in mems: if mem.name in img2label: data.append(tf.extractfile(mem).read()) labels.append(img2label[mem.name]) if len(data) == num_per_batch: output = {} output['label'] = labels output['data'] = data cPickle.dump( output, open('%s/batch_%d' % (out_path, file_id), 'w'), protocol=cPickle.HIGHEST_PROTOCOL) file_id += 1 data = [] labels = [] if len(data) > 0: output = {} output['label'] = labels output['data'] = data cPickle.dump( output, open('%s/batch_%d' % (out_path, file_id), 'w'), protocol=cPickle.HIGHEST_PROTOCOL) with open(meta_file, 'a') as meta: for file in os.listdir(out_path): meta.write(os.path.abspath("%s/%s" % (out_path, file)) + "\n") return meta_file def load_image_bytes(bytes, is_color=True): """ Load an color or gray image from bytes array. Example usage: .. code-block:: python with open('cat.jpg') as f: im = load_image_bytes(f.read()) :param bytes: the input image bytes array. :type bytes: str :param is_color: If set is_color True, it will load and return a color image. Otherwise, it will load and return a gray image. :type is_color: bool """ flag = 1 if is_color else 0 file_bytes = np.asarray(bytearray(bytes), dtype=np.uint8) img = cv2.imdecode(file_bytes, flag) return img def load_image(file, is_color=True): """ Load an color or gray image from the file path. Example usage: .. code-block:: python im = load_image('cat.jpg') :param file: the input image path. :type file: string :param is_color: If set is_color True, it will load and return a color image. Otherwise, it will load and return a gray image. :type is_color: bool """ # cv2.IMAGE_COLOR for OpenCV3 # cv2.CV_LOAD_IMAGE_COLOR for older OpenCV Version # cv2.IMAGE_GRAYSCALE for OpenCV3 # cv2.CV_LOAD_IMAGE_GRAYSCALE for older OpenCV Version # Here, use constant 1 and 0 # 1: COLOR, 0: GRAYSCALE flag = 1 if is_color else 0 im = cv2.imread(file, flag) return im def resize_short(im, size): """ Resize an image so that the length of shorter edge is size. Example usage: .. code-block:: python im = load_image('cat.jpg') im = resize_short(im, 256) :param im: the input image with HWC layout. :type im: ndarray :param size: the shorter edge size of image after resizing. :type size: int """ h, w = im.shape[:2] h_new, w_new = size, size if h > w: h_new = size * h / w else: w_new = size * w / h im = cv2.resize(im, (h_new, w_new), interpolation=cv2.INTER_CUBIC) return im def to_chw(im, order=(2, 0, 1)): """ Transpose the input image order. The image layout is HWC format opened by cv2 or PIL. Transpose the input image to CHW layout according the order (2,0,1). Example usage: .. code-block:: python im = load_image('cat.jpg') im = resize_short(im, 256) im = to_chw(im) :param im: the input image with HWC layout. :type im: ndarray :param order: the transposed order. :type order: tuple|list """ assert len(im.shape) == len(order) im = im.transpose(order) return im def center_crop(im, size, is_color=True): """ Crop the center of image with size. Example usage: .. code-block:: python im = center_crop(im, 224) :param im: the input image with HWC layout. :type im: ndarray :param size: the cropping size. :type size: int :param is_color: whether the image is color or not. :type is_color: bool """ h, w = im.shape[:2] h_start = (h - size) / 2 w_start = (w - size) / 2 h_end, w_end = h_start + size, w_start + size if is_color: im = im[h_start:h_end, w_start:w_end, :] else: im = im[h_start:h_end, w_start:w_end] return im def random_crop(im, size, is_color=True): """ Randomly crop input image with size. Example usage: .. code-block:: python im = random_crop(im, 224) :param im: the input image with HWC layout. :type im: ndarray :param size: the cropping size. :type size: int :param is_color: whether the image is color or not. :type is_color: bool """ h, w = im.shape[:2] h_start = np.random.randint(0, h - size + 1) w_start = np.random.randint(0, w - size + 1) h_end, w_end = h_start + size, w_start + size if is_color: im = im[h_start:h_end, w_start:w_end, :] else: im = im[h_start:h_end, w_start:w_end] return im def left_right_flip(im, is_color=True): """ Flip an image along the horizontal direction. Return the flipped image. Example usage: .. code-block:: python im = left_right_flip(im) :paam im: input image with HWC layout or HW layout for gray image :type im: ndarray :paam is_color: whether color input image or not :type is_color: bool """ if len(im.shape) == 3 and is_color: return im[:, ::-1, :] else: return im[:, ::-1] def simple_transform(im, resize_size, crop_size, is_train, is_color=True, mean=None): """ Simply data argumentation for training. These operations include resizing, croping and flipping. Example usage: .. code-block:: python im = simple_transform(im, 256, 224, True) :param im: The input image with HWC layout. :type im: ndarray :param resize_size: The shorter edge length of the resized image. :type resize_size: int :param crop_size: The cropping size. :type crop_size: int :param is_train: Whether it is training or not. :type is_train: bool :param is_color: whether the image is color or not. :type is_color: bool :param mean: the mean values, which can be element-wise mean values or mean values per channel. :type mean: numpy array | list """ im = resize_short(im, resize_size) if is_train: im = random_crop(im, crop_size, is_color) if np.random.randint(2) == 0: im = left_right_flip(im, is_color) else: im = center_crop(im, crop_size, is_color) if len(im.shape) == 3: im = to_chw(im) im = im.astype('float32') if mean is not None: mean = np.array(mean, dtype=np.float32) # mean value, may be one value per channel if mean.ndim == 1 and is_color: mean = mean[:, np.newaxis, np.newaxis] elif mean.ndim == 1: mean = mean else: # elementwise mean assert len(mean.shape) == len(im) im -= mean return im def load_and_transform(filename, resize_size, crop_size, is_train, is_color=True, mean=None): """ Load image from the input file `filename` and transform image for data argumentation. Please refer to the `simple_transform` interface for the transform operations. Example usage: .. code-block:: python im = load_and_transform('cat.jpg', 256, 224, True) :param filename: The file name of input image. :type filename: string :param resize_size: The shorter edge length of the resized image. :type resize_size: int :param crop_size: The cropping size. :type crop_size: int :param is_train: Whether it is training or not. :type is_train: bool :param is_color: whether the image is color or not. :type is_color: bool :param mean: the mean values, which can be element-wise mean values or mean values per channel. :type mean: numpy array | list """ im = load_image(filename, is_color) im = simple_transform(im, resize_size, crop_size, is_train, is_color, mean) return im