/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/data_type.h" #include "paddle/framework/eigen.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/tensor.h" #include "paddle/platform/device_context.h" namespace paddle { namespace framework { /** * @brief Copy the content of external tensor to a new place. * * @param[in] src The external tensor. * @param[in] dst_place The dst place. * @param[in] ctx The device context contains device resources. * * @note CopyFrom supports CPU <-> GPU, GPU <-> GPU. */ inline void CopyFrom(const Tensor& src, const platform::Place& dst_place, const platform::DeviceContext& ctx, Tensor* dst) { src.check_memory_size(); dst->Resize(src.dims()); dst->set_layout(src.layout()); auto src_place = src.place(); auto src_ptr = src.data(); auto dst_ptr = dst->mutable_data(dst_place, src.type()); auto size = src.numel() * SizeOfType(src.type()); if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) { memory::Copy(boost::get(dst_place), dst_ptr, boost::get(src_place), src_ptr, size); } #ifdef PADDLE_WITH_CUDA else if (platform::is_gpu_place(src_place) && // NOLINT platform::is_cpu_place(dst_place)) { auto src_gpu_place = boost::get(src_place); auto dst_cpu_place = boost::get(dst_place); auto ctx_place = ctx.GetPlace(); PADDLE_ENFORCE(platform::is_gpu_place(ctx_place)); auto ctx_gpu_place = boost::get(ctx_place); PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place); memory::Copy( dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, reinterpret_cast(ctx).stream()); } else if (platform::is_cpu_place(src_place) && platform::is_gpu_place(dst_place)) { auto src_cpu_place = boost::get(src_place); auto dst_gpu_place = boost::get(dst_place); auto ctx_place = ctx.GetPlace(); PADDLE_ENFORCE(platform::is_gpu_place(ctx_place)); auto ctx_gpu_place = boost::get(ctx_place); PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place); memory::Copy( dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, reinterpret_cast(ctx).stream()); } else if (platform::is_gpu_place(src_place) && platform::is_gpu_place(dst_place)) { auto src_gpu_place = boost::get(src_place); auto dst_gpu_place = boost::get(dst_place); auto ctx_place = ctx.GetPlace(); PADDLE_ENFORCE(platform::is_gpu_place(ctx_place)); auto ctx_gpu_place = boost::get(ctx_place); PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place); memory::Copy( dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, reinterpret_cast(ctx).stream()); } #endif } /** * @brief CopyFrom support CPU <-> CPU */ inline void CopyFrom(const Tensor& src, const platform::Place& dst_place, Tensor* dst) { src.check_memory_size(); dst->Resize(src.dims()); dst->set_layout(src.layout()); auto src_place = src.place(); auto src_ptr = src.data(); auto dst_ptr = dst->mutable_data(dst_place, src.type()); auto size = src.numel() * SizeOfType(src.type()); PADDLE_ENFORCE(platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)); memory::Copy(boost::get(dst_place), dst_ptr, boost::get(src_place), src_ptr, size); } /** * @brief Copy the content of an external vector to a tensor. * * @param[in] src The external tensor. * @param[in] ctx The device context contains device resources. * * * @note CopyFromVector assumes that the tensor has been resized * before invoking. */ template inline void CopyFromVector(const std::vector& src, const platform::DeviceContext& ctx, Tensor* dst) { auto dst_place = ctx.GetPlace(); auto src_ptr = static_cast(src.data()); platform::CPUPlace src_place; dst->Resize({static_cast(src.size())}); auto dst_ptr = static_cast(dst->mutable_data(dst_place)); auto size = src.size() * sizeof(T); if (platform::is_cpu_place(dst_place)) { memory::Copy(boost::get(dst_place), dst_ptr, src_place, src_ptr, size); } #ifdef PADDLE_WITH_CUDA else if (platform::is_gpu_place(dst_place)) { // NOLINT memory::Copy( boost::get(dst_place), dst_ptr, src_place, src_ptr, size, reinterpret_cast(ctx).stream()); } #endif } /** * @brief CopyFromVector CPU vector -> CPU Tensor */ template inline void CopyFromVector(const std::vector& src, Tensor* dst) { platform::CPUPlace dst_place = platform::CPUPlace(); auto src_ptr = static_cast(src.data()); platform::CPUPlace src_place; dst->Resize({static_cast(src.size())}); auto dst_ptr = static_cast(dst->mutable_data(dst_place)); auto size = src.size() * sizeof(T); memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size); } /** * @brief Copy the content of a tensor to a vector * * @param[in] src The external tensor. * @param[in] ctx The device context contains device resources. * * * @note CopyFromVector assumes that the tensor has been resized * before invoking. */ template inline void CopyToVector(const Tensor& src, const platform::DeviceContext& ctx, std::vector* dst) { auto src_ptr = static_cast(src.data()); auto size = src.numel() * sizeof(T); platform::CPUPlace dst_place; dst->resize(src.numel()); auto dst_ptr = static_cast(dst->data()); if (platform::is_cpu_place(src.place())) { memory::Copy(dst_place, dst_ptr, boost::get(src.place()), src_ptr, size); } #ifdef PADDLE_WITH_CUDA else if (platform::is_gpu_place(src.place())) { // NOLINT memory::Copy( dst_place, dst_ptr, boost::get(src.place()), src_ptr, size, reinterpret_cast(ctx).stream()); } #endif } /** * @brief CopyToVector CPUTensor <-> CPU Vector */ template inline void CopyToVector(const Tensor& src, std::vector* dst) { auto src_ptr = static_cast(src.data()); auto size = src.numel() * sizeof(T); platform::CPUPlace dst_place; dst->resize(src.numel()); auto dst_ptr = static_cast(dst->data()); PADDLE_ENFORCE(platform::is_cpu_place(src.place())); memory::Copy(dst_place, dst_ptr, boost::get(src.place()), src_ptr, size); } // Returns true if a tensor contains NAN, i.e., Not A Number. bool HasNAN(const framework::Tensor& tensor); // Returns true if a tensor contains Inf, i.e., Infinity. bool HasInf(const framework::Tensor& tensor); inline void SerializeToStream(std::ostream& os, const Tensor& tensor, const platform::DeviceContext& dev_ctx) { // TODO(typhoonzero): serialize to ostream { // the 1st field, uint32_t version constexpr uint32_t version = 0; os.write(reinterpret_cast(&version), sizeof(version)); } { // the 2nd field, tensor description // int32_t size // void* protobuf message proto::TensorDesc desc; desc.set_data_type(framework::ToDataType(tensor.type())); auto dims = framework::vectorize(tensor.dims()); auto* pb_dims = desc.mutable_dims(); pb_dims->Resize(static_cast(dims.size()), 0); std::copy(dims.begin(), dims.end(), pb_dims->begin()); int32_t size = desc.ByteSize(); os.write(reinterpret_cast(&size), sizeof(size)); auto out = desc.SerializeAsString(); os.write(out.data(), size); } { // the 3rd field, tensor data uint64_t size = tensor.memory_size(); auto* data_ptr = tensor.data(); PADDLE_ENFORCE(size < std::numeric_limits::max(), "Index overflow when writing tensor"); if (platform::is_gpu_place(tensor.place())) { #ifdef PADDLE_WITH_CUDA constexpr size_t kBufSize = 1024 * 1024 * 64; // 64MB std::unique_ptr buf(new char[kBufSize]); auto& gpu_dev_ctx = static_cast(dev_ctx); platform::CPUPlace cpu; uintptr_t data = reinterpret_cast(data_ptr); while (size != 0) { size_t size_to_write = std::min(kBufSize, static_cast(size)); memory::Copy(cpu, buf.get(), boost::get(tensor.place()), reinterpret_cast(data), size_to_write, gpu_dev_ctx.stream()); gpu_dev_ctx.Wait(); os.write(buf.get(), size_to_write); data += size_to_write; size -= size_to_write; } #else PADDLE_THROW("Unexpected branch"); #endif } else { os.write(static_cast(data_ptr), static_cast(size)); } } } struct DeserializedDataFunctor { DeserializedDataFunctor(void** buf, Tensor* tensor, const platform::Place& place) : buf_(buf), tensor_(tensor), place_(place) {} template void operator()() { *buf_ = tensor_->mutable_data(place_); } void** buf_; Tensor* tensor_; platform::Place place_; }; inline void DeserializeFromStream(std::istream& is, Tensor* tensor, const platform::DeviceContext& dev_ctx) { uint32_t version; is.read(reinterpret_cast(&version), sizeof(version)); PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); proto::TensorDesc desc; { // int32_t size // proto buffer int32_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::unique_ptr buf(new char[size]); is.read(reinterpret_cast(buf.get()), size); PADDLE_ENFORCE(desc.ParseFromArray(buf.get(), size), "Cannot parse tensor desc"); } { // read tensor std::vector dims; dims.reserve(static_cast(desc.dims().size())); std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); tensor->Resize(framework::make_ddim(dims)); void* buf; auto ctx = platform::CPUDeviceContext(); if (platform::is_gpu_place(dev_ctx.GetPlace())) { #ifdef PADDLE_WITH_CUDA Tensor cpu_tensor; cpu_tensor.Resize(framework::make_ddim(dims)); framework::VisitDataType( desc.data_type(), DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace())); is.read(static_cast(buf), cpu_tensor.memory_size()); auto cpu_place = new platform::CPUPlace(); framework::CopyFrom(cpu_tensor, *cpu_place, dev_ctx, tensor); delete cpu_place; #else PADDLE_THROW("Unexpected branch"); #endif } else { framework::VisitDataType( desc.data_type(), DeserializedDataFunctor(&buf, tensor, ctx.GetPlace())); is.read(static_cast(buf), tensor->memory_size()); } } } } // namespace framework } // namespace paddle