// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/tracer.h" #include #include #include #include #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/enforce.h" #ifdef WITH_GPERFTOOLS #include "gperftools/profiler.h" #endif DEFINE_string( tracer_profile_fname, "", "Profiler filename for imperative tracer, which generated by gperftools." "Only valid when compiled `WITH_PROFILER=ON`. Empty if disable."); namespace paddle { namespace imperative { static std::once_flag gTracerProfileOnce; #ifdef WITH_GPERFTOOLS static bool gTracerProfilerStarted = false; #endif void CreateGradOp(const framework::OpDesc& op_desc, const std::unordered_set& no_grad_set, const std::vector& grad_sub_block, std::vector* grad_op_descs, std::unordered_map* grad_to_var) { PADDLE_ENFORCE(grad_op_descs->empty()); std::vector> descs = framework::OpInfoMap::Instance() .Get(op_desc.Type()) .GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block); for (auto& desc : descs) { grad_op_descs->emplace_back(desc.release()); } } void InitVar(framework::Variable* var, framework::Variable* grad_var, platform::DeviceContext* dev_ctx) { PADDLE_ENFORCE_NOT_NULL(dev_ctx, "Could not get valid device from forward op"); auto& var_t = var->Get(); grad_var->GetMutable()->mutable_data( var_t.dims(), dev_ctx->GetPlace()); operators::math::set_constant( *dev_ctx, grad_var->GetMutable(), 0.0); } platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) { platform::Place result = place; for (auto it : inputs) { for (VarBase* var : it.second) { platform::Place tmp_place = var->var_->Get().place(); if (!platform::is_same_place(tmp_place, result)) { PADDLE_THROW( "Input variable should keep in the same place: %s, but get place: " "%s of input %s instead", result, tmp_place, it.first); } } } return result; } Tracer::Tracer(framework::BlockDesc* root_block) : root_block_(root_block) { if (!FLAGS_tracer_profile_fname.empty()) { std::call_once(gTracerProfileOnce, [] { #ifdef WITH_GPERFTOOLS ProfilerStart(FLAGS_tracer_profile_fname.c_str()); gTracerProfilerStarted = true; #else LOG(WARNING) << "Paddle is not compiled with gperftools. " "FLAGS_tracer_profile_fname will be ignored"; #endif }); } } std::set Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs, const VarBasePtrMap& outputs, framework::BlockDesc* block, const platform::Place expected_place, const bool stop_gradient) { #ifdef WITH_GPERFTOOLS if (gTracerProfilerStarted) { ProfilerFlush(); } #endif std::map vars; framework::OpDesc* op_desc = op->op_desc_; VLOG(3) << "tracer tracing " << op_desc->Type() << " trace id " << op->trace_id_; op_desc->InferShape(*block); op_desc->InferVarType(block); std::unique_ptr op_base = framework::OpRegistry::CreateOp(*op_desc); framework::VariableValueMap invars_map; framework::VariableValueMap outvars_map; op->input_vars_ = inputs; for (auto it : op->input_vars_) { auto& invars = invars_map[it.first]; invars.reserve(it.second.size()); for (VarBase* inp : it.second) { PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr", op->op_desc_->Type(), inp->var_desc_->Name()); invars.emplace_back(inp->var_); vars[inp->var_desc_->Name()] = inp; if (inp->PreOp() && !inp->IsStopGradient()) { op->pre_ops_[it.first].push_back(inp->PreOp()); op->pre_ops_out_idx_[it.first].push_back(inp->PreOpOutIdx()); VLOG(3) << "add pre op " << inp->PreOp()->op_desc_->Type(); } else { op->pre_ops_[it.first].push_back(nullptr); } VLOG(3) << "input vname " << inp->var_desc_->Name() << " " << inp->var_->IsInitialized() << " stop_gradient " << inp->IsStopGradient(); } } op->output_vars_ = outputs; for (auto it : op->output_vars_) { auto& outvars = outvars_map[it.first]; const std::vector& outputs = it.second; outvars.reserve(outputs.size()); for (size_t i = 0; i < outputs.size(); ++i) { VarBase* out = outputs[i]; outvars.emplace_back(out->var_); vars[out->var_desc_->Name()] = out; framework::VarDesc* var_desc = block->FindVar(out->var_desc_->Name()); if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) { out->var_->GetMutable(); } else { LOG(ERROR) << "tracer doesn't support yet"; } out->TrackPreOp(op, it.first, i, stop_gradient); VLOG(3) << "output vname " << out->var_desc_->Name() << " " << out->var_->IsInitialized(); } } VLOG(3) << "tracer running " << op_desc->Type(); framework::RuntimeContext ctx(invars_map, outvars_map); // TODO(panyx0718): Cache p. framework::OperatorWithKernel* op_kernel = dynamic_cast(op_base.get()); PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel"); framework::Scope scope; op->place_ = GetExpectedPlace(expected_place, inputs); PreparedOp prepared_op = PreparedOp::Prepare(ctx, *op_kernel, op->place_); prepared_op.op.RuntimeInferShape(scope, op->place_, ctx); prepared_op.func( framework::ExecutionContext(prepared_op.op, scope, *prepared_op.dev_ctx, prepared_op.ctx, prepared_op.kernel_configs)); std::set vars_saved_for_backward; if (!stop_gradient) { std::unique_ptr> grad_to_var( new std::unordered_map()); CreateGradOp(*op_desc, {}, {block}, &op->grad_op_descs_, grad_to_var.get()); op->grad_input_vars_.resize(op->grad_op_descs_.size()); op->grad_output_vars_.resize(op->grad_op_descs_.size()); for (size_t i = 0; i < op->grad_op_descs_.size(); ++i) { framework::OpDesc* grad_op_desc = op->grad_op_descs_[i]; for (auto it : grad_op_desc->Inputs()) { auto& grad_in_vars = op->grad_input_vars_[i][it.first]; for (const std::string& grad_invar : it.second) { block->FindRecursiveOrCreateVar(grad_invar); auto var_it = grad_to_var->find(grad_invar); if (var_it == grad_to_var->end()) { auto fwd_var_it = vars.find(grad_invar); PADDLE_ENFORCE(fwd_var_it != vars.end()); // Forward inputs or outputs. grad_in_vars.push_back(fwd_var_it->second->var_); } else { VarBase* var = vars[var_it->second]; if (!var->grads_->var_->IsInitialized()) { InitVar(var->var_, var->grads_->var_, prepared_op.GetDeviceContext()); } // Douts. grad_in_vars.push_back(var->grads_->var_); } vars_saved_for_backward.insert(it.first); } } for (auto it : grad_op_desc->Outputs()) { auto& grad_out_vars = op->grad_output_vars_[i][it.first]; for (const std::string& grad_outvar : it.second) { block->FindRecursiveOrCreateVar(grad_outvar); auto var_it = grad_to_var->find(grad_outvar); PADDLE_ENFORCE(var_it != grad_to_var->end(), "Could not found the grad op output var, should this " "operator %s's stop gradient be True", op_desc->Type()); VarBase* var = vars[var_it->second]; if (!var->grads_->var_->IsInitialized()) { InitVar(var->var_, var->grads_->var_, prepared_op.GetDeviceContext()); } grad_out_vars.push_back(var->grads_->var_); } } } } op->block_ = block; return vars_saved_for_backward; } std::vector Tracer::PyTrace(OpBase* op, const std::vector& inputs, bool stop_gradient) { VLOG(3) << "py_trace"; op->input_vars_[PyLayer::kFwdInp] = inputs; op->output_vars_[PyLayer::kFwdOut] = PyLayer::Apply(op->forward_id_, inputs); for (VarBase* inp : inputs) { if (inp->PreOp() && !inp->IsStopGradient()) { op->pre_ops_[PyLayer::kFwdInp].push_back(inp->PreOp()); op->pre_ops_out_idx_[PyLayer::kFwdInp].push_back(inp->PreOpOutIdx()); } else { op->pre_ops_[PyLayer::kFwdInp].push_back(nullptr); } } auto& outputs = op->output_vars_[PyLayer::kFwdOut]; for (size_t i = 0; i < outputs.size(); ++i) { VarBase* out = outputs[i]; out->TrackPreOp(op, PyLayer::kFwdOut, i, stop_gradient); } if (!stop_gradient) { op->grad_input_vars_.resize(1); op->grad_output_vars_.resize(1); auto& grad_input_vars = op->grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)]; auto& grad_output_vars = op->grad_output_vars_[0][framework::GradVarName(PyLayer::kFwdOut)]; for (const VarBase* inp : inputs) { grad_input_vars.push_back(inp->var_); } for (VarBase* out : outputs) { grad_input_vars.push_back(out->var_); } platform::CPUPlace place; for (VarBase* out : outputs) { grad_input_vars.push_back(out->grads_->var_); if (!grad_input_vars.back()->IsInitialized()) { // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now InitVar(out->var_, grad_input_vars.back(), platform::DeviceContextPool::Instance().Get(place)); } } for (const VarBase* inp : inputs) { grad_output_vars.push_back(inp->grads_->var_); if (!grad_output_vars.back()->IsInitialized()) { // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now InitVar(inp->var_, grad_output_vars.back(), platform::DeviceContextPool::Instance().Get(place)); } } } return outputs; } } // namespace imperative } // namespace paddle