// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/tests/api/tester_helper.h" namespace paddle { namespace inference { struct DataRecord { std::vector> query, title; std::vector lod1, lod2; size_t batch_iter{0}, batch_size{1}, num_samples; // total number of samples DataRecord() = default; explicit DataRecord(const std::string &path, int batch_size = 1) : batch_size(batch_size) { Load(path); } DataRecord NextBatch() { DataRecord data; size_t batch_end = batch_iter + batch_size; // NOTE skip the final batch, if no enough data is provided. if (batch_end <= query.size()) { GetInputPerBatch(query, &data.query, &data.lod1, batch_iter, batch_end); GetInputPerBatch(title, &data.title, &data.lod2, batch_iter, batch_end); } batch_iter += batch_size; return data; } void Load(const std::string &path) { std::ifstream file(path); std::string line; int num_lines = 0; while (std::getline(file, line)) { num_lines++; std::vector data; split(line, '\t', &data); // load query data std::vector query_data; split_to_int64(data[0], ' ', &query_data); // load title data std::vector title_data; split_to_int64(data[1], ' ', &title_data); query.push_back(std::move(query_data)); title.push_back(std::move(title_data)); } num_samples = num_lines; } }; void PrepareInputs(std::vector *input_slots, DataRecord *data, int batch_size) { PaddleTensor lod_query_tensor, lod_title_tensor; lod_query_tensor.name = "left"; lod_title_tensor.name = "right"; auto one_batch = data->NextBatch(); // assign data TensorAssignData(&lod_query_tensor, one_batch.query, one_batch.lod1); TensorAssignData(&lod_title_tensor, one_batch.title, one_batch.lod2); // Set inputs. input_slots->assign({lod_query_tensor, lod_title_tensor}); for (auto &tensor : *input_slots) { tensor.dtype = PaddleDType::INT64; } } void SetConfig(AnalysisConfig *cfg) { cfg->SetModel(FLAGS_infer_model); cfg->DisableGpu(); cfg->SwitchSpecifyInputNames(); cfg->SwitchIrOptim(); } void SetInput(std::vector> *inputs) { DataRecord data(FLAGS_infer_data, FLAGS_batch_size); std::vector input_slots; int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1; LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size; for (int bid = 0; bid < epoch; ++bid) { PrepareInputs(&input_slots, &data, FLAGS_batch_size); (*inputs).emplace_back(input_slots); } } // Easy for profiling independently. void profile(bool use_mkldnn = false) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> outputs; if (use_mkldnn) { cfg.EnableMKLDNN(); cfg.pass_builder()->AppendPass("fc_mkldnn_pass"); } std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(reinterpret_cast(&cfg), input_slots_all, &outputs, FLAGS_num_threads); if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) { PADDLE_ENFORCE_GT(outputs.size(), 0); PADDLE_ENFORCE_EQ(outputs.back().size(), 2UL); for (auto &output : outputs.back()) { size_t size = GetSize(output); PADDLE_ENFORCE_GT(size, 0); float *result = static_cast(output.data.data()); // output is probability, which is in (-1, 1). for (size_t i = 0; i < size; i++) { EXPECT_GT(result[i], -1); EXPECT_LT(result[i], 1); } } } } TEST(Analyzer_MM_DNN, profile) { profile(); } #ifdef PADDLE_WITH_MKLDNN TEST(Analyzer_MM_DNN, profile_mkldnn) { profile(true /* use_mkldnn */); } #endif // Check the fuse status TEST(Analyzer_MM_DNN, fuse_statis) { AnalysisConfig cfg; SetConfig(&cfg); int num_ops; auto predictor = CreatePaddlePredictor(cfg); auto fuse_statis = GetFuseStatis( static_cast(predictor.get()), &num_ops); } // Compare result of NativeConfig and AnalysisConfig void compare(bool use_mkldnn = false) { AnalysisConfig cfg; SetConfig(&cfg); if (use_mkldnn) { cfg.EnableMKLDNN(); cfg.pass_builder()->AppendPass("fc_mkldnn_pass"); } std::vector> input_slots_all; SetInput(&input_slots_all); CompareNativeAndAnalysis( reinterpret_cast(&cfg), input_slots_all); } TEST(Analyzer_MM_DNN, compare) { compare(); } #ifdef PADDLE_WITH_MKLDNN TEST(Analyzer_MM_DNN, compare_mkldnn) { compare(true /* use_mkldnn */); } #endif // Compare Deterministic result TEST(Analyzer_MM_DNN, compare_determine) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareDeterministic(reinterpret_cast(&cfg), input_slots_all); } } // namespace inference } // namespace paddle