# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci import paddle from paddle import fluid from paddle.fluid import Program, core, program_guard from paddle.fluid.framework import convert_np_dtype_to_dtype_ class TestSumOp(OpTest): def setUp(self): self.init_dtype() self.init_input() self.init_attrs() self.calc_output() self.python_api = paddle.sum self.public_python_api = paddle.sum self.op_type = "reduce_sum" self.prim_op_type = "prim" self.inputs = {'X': self.x} self.outputs = {'Out': self.out} self.enable_cinn = True def init_dtype(self): self.dtype = np.float64 def init_input(self): self.x = np.random.random((5, 6, 10)).astype(self.dtype) def init_attrs(self): self.attrs = {'dim': [0]} def calc_output(self): self.out = self.x.sum(axis=tuple(self.attrs['dim'])) def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestComplexSumOP(TestSumOp): def init_dtype(self): self.dtype = np.complex128 def init_input(self): self.x = np.random.random((3, 4)).astype(self.dtype) def init_attrs(self): self.attrs = {'dim': [0]} def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=False) class TestSumOp_ZeroDim(TestSumOp): def init_attrs(self): self.attrs = {'dim': [], 'reduce_all': True} def init_input(self): self.x = np.random.random([]).astype(self.dtype) def calc_output(self): self.out = self.x.sum(axis=None) def test_check_grad(self): self.check_grad(['X'], 'Out') class TestSumOp5D(TestSumOp): def init_input(self): self.x = np.random.random((1, 2, 5, 6, 10)).astype(self.dtype) def init_attrs(self): self.attrs = {'dim': [0]} class TestSumOp6D(TestSumOp): def init_input(self): self.x = np.random.random((1, 1, 2, 5, 6, 10)).astype(self.dtype) def init_attrs(self): self.attrs = {'dim': [0]} class TestSumOp8D(TestSumOp): def init_input(self): self.x = np.random.random((1, 3, 1, 2, 1, 4, 3, 10)).astype(self.dtype) def init_attrs(self): self.attrs = {'dim': (0, 3)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestSumOp_withInt(TestSumOp): def init_input(self): # ref to https://en.wikipedia.org/wiki/Half-precision_floating-point_format # Precision limitations on integer values between 0 and 2048 can be exactly represented self.x = np.random.randint(0, 30, (10, 10)).astype(self.dtype) def init_attrs(self): self.attrs = {'dim': (0, 1)} def test_check_output(self): self.check_output() def calc_gradient(self): x = self.inputs["X"] grad = np.ones(x.shape, dtype=x.dtype) return (grad,) def test_check_grad(self): self.check_grad( ['X'], 'Out', user_defined_grads=self.calc_gradient(), check_prim=True, ) class TestSumOp3Dim(TestSumOp): def init_input(self): self.x = np.random.uniform(0, 0.1, (5, 6, 10)).astype(self.dtype) def init_attrs(self): self.attrs = {'dim': (0, 1, 2)} def test_check_output(self): self.check_output() def calc_gradient(self): x = self.inputs["X"] grad = np.ones(x.shape, dtype=x.dtype) return (grad,) def test_check_grad(self): self.check_grad( ['X'], 'Out', user_defined_grads=self.calc_gradient(), check_prim=True, ) def create_test_fp16_class(parent): @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestSumOpFp16(parent): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad( ['X'], 'Out', check_prim=True, ) create_test_fp16_class(TestSumOp) create_test_fp16_class(TestSumOp_ZeroDim) create_test_fp16_class(TestSumOp5D) create_test_fp16_class(TestSumOp6D) create_test_fp16_class(TestSumOp8D) create_test_fp16_class(TestSumOp_withInt) create_test_fp16_class(TestSumOp3Dim) def create_test_bf16_class(parent): @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestSumOpBf16(parent): def setUp(self): self.inputs = {'X': convert_float_to_uint16(self.x)} self.outputs = {'Out': convert_float_to_uint16(self.out)} self.enable_cinn = False def init_dtype(self): self.dtype = np.uint16 def test_check_output(self): place = core.CUDAPlace(0) self.check_output_with_place(place) def test_check_grad(self): place = core.CUDAPlace(0) self.check_grad_with_place( place, ['X'], 'Out', user_defined_grads=self.gradient, check_prim=True, ) def calc_gradient(self): x = self.x grad = np.ones(x.shape, dtype=x.dtype) return [grad] create_test_bf16_class(TestSumOp) create_test_bf16_class(TestSumOp_ZeroDim) create_test_bf16_class(TestSumOp5D) create_test_bf16_class(TestSumOp6D) create_test_bf16_class(TestSumOp8D) create_test_bf16_class(TestSumOp_withInt) create_test_bf16_class(TestSumOp3Dim) @skip_check_grad_ci( reason="reduce_max is discontinuous non-derivable function," " its gradient check is not supported by unittest framework." ) class TestMaxOp(OpTest): """Remove Max with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_max" self.prim_op_type = "prim" self.python_api = paddle.max self.public_python_api = paddle.max self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [-1]} self.outputs = { 'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() def test_check_grad(self): # only composite op support gradient check of reduce_max self.check_grad( ['X'], 'Out', check_prim=True, only_check_prim=True, ) class TestMaxOp_ZeroDim(OpTest): """Remove Max with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_max" self.prim_op_type = "prim" self.python_api = paddle.max self.public_python_api = paddle.max self.enable_cinn = False self.inputs = {'X': np.random.random([]).astype("float64")} self.attrs = {'dim': []} self.outputs = { 'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() def test_check_grad(self): # only composite op support gradient check of reduce_max self.check_grad( ['X'], 'Out', check_prim=True, only_check_prim=True, ) class TestMaxFP32Op(OpTest): """Remove Max with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_max" self.prim_op_type = "prim" self.python_api = paddle.max self.public_python_api = paddle.max self.init_dtype() if self.dtype == np.uint16: x = np.random.random((5, 6, 10)).astype(np.float32) self.inputs = {'X': convert_float_to_uint16(x)} else: x = np.random.random((5, 6, 10)).astype(self.dtype) self.inputs = {'X': x} self.attrs = {'dim': [-1], 'keep_dim': True} out = x.max(axis=tuple(self.attrs['dim']), keepdims=True) if self.dtype == np.uint16: self.outputs = {'Out': convert_float_to_uint16(out)} else: self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): # only composite op support gradient check of reduce_max self.check_grad( ['X'], 'Out', check_prim=True, only_check_prim=True, ) def init_dtype(self): self.dtype = np.float32 class TestMaxFP16Op(TestMaxFP32Op): def init_dtype(self): self.dtype = np.float16 @unittest.skipIf( not core.is_compiled_with_cuda() or not core.is_bfloat16_supported(core.CUDAPlace(0)), "core is not compiled with CUDA or not support the bfloat16", ) class TestMaxBF16Op(TestMaxFP32Op): def init_dtype(self): self.dtype = np.uint16 def test_check_output(self): self.check_output_with_place(core.CUDAPlace(0)) def test_check_grad(self): # only composite op support gradient check of reduce_max self.check_grad_with_place( core.CUDAPlace(0), ['X'], 'Out', check_prim=True, only_check_prim=True, ) @skip_check_grad_ci( reason="reduce_min is discontinuous non-derivable function," " its gradient check is not supported by unittest framework." ) class TestMinOp(OpTest): """Remove Min with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_min" self.python_api = paddle.min self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [2]} self.outputs = { 'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() class TestMinOp_ZeroDim(OpTest): """Remove Min with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_min" self.python_api = paddle.min self.inputs = {'X': np.random.random([]).astype("float64")} self.attrs = {'dim': []} self.outputs = { 'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() class TestMin6DOp(OpTest): """Remove Min with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_min" self.python_api = paddle.min self.inputs = { 'X': np.random.random((2, 4, 3, 5, 6, 10)).astype("float64") } self.attrs = {'dim': [2, 4]} self.outputs = { 'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() class TestMin8DOp(OpTest): """Remove Min with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_min" self.python_api = paddle.min self.inputs = { 'X': np.random.random((2, 4, 3, 5, 6, 3, 2, 4)).astype("float64") } self.attrs = {'dim': [2, 3, 4]} self.outputs = { 'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() @skip_check_grad_ci( reason="reduce_min is discontinuous non-derivable function," " its gradient check is not supported by unittest framework." ) class TestMinFP16Op(OpTest): """Remove Min with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_min" self.python_api = paddle.min self.public_python_api = paddle.min self.init_dtype() if self.dtype == np.uint16: x = np.random.random((5, 6, 10)).astype(np.float32) self.inputs = {'X': convert_float_to_uint16(x)} else: x = np.random.random((5, 6, 10)).astype(self.dtype) self.inputs = {'X': x} self.attrs = {'dim': [2], 'keep_dim': True} out = x.min(axis=tuple(self.attrs['dim']), keepdims=True) if self.dtype == np.uint16: self.outputs = {'Out': convert_float_to_uint16(out)} else: self.outputs = {'Out': out} def init_dtype(self): self.dtype = np.float16 def test_check_output(self): self.check_output() @unittest.skipIf( not core.is_compiled_with_cuda() or not core.is_bfloat16_supported(core.CUDAPlace(0)), "core is not compiled with CUDA or not support the bfloat16", ) class TestMinBF16Op(TestMinFP16Op): def init_dtype(self): self.dtype = np.uint16 def test_check_output(self): self.check_output_with_place(core.CUDAPlace(0)) def raw_reduce_prod(x, dim=[0], keep_dim=False): return paddle.prod(x, dim, keep_dim) class TestProdOp(OpTest): def setUp(self): self.op_type = "reduce_prod" self.python_api = raw_reduce_prod self.public_python_api = raw_reduce_prod self.prim_op_type = "prim" self.init_data_type() self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.data_type)} self.outputs = {'Out': self.inputs['X'].prod(axis=0)} def init_data_type(self): self.data_type = ( "float32" if core.is_compiled_with_rocm() else "float64" ) def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestProdOpFp64(TestProdOp): def init_data_type(self): self.data_type = "float64" class TestProdOp_ZeroDim(OpTest): def setUp(self): self.python_api = raw_reduce_prod self.public_python_api = raw_reduce_prod self.op_type = "reduce_prod" self.prim_op_type = "prim" self.inputs = {'X': np.random.random([]).astype("float64")} self.outputs = {'Out': self.inputs['X'].prod()} self.attrs = {'dim': [], 'reduce_all': True} # 0-D tensor doesn't support in cinn self.enable_cinn = False def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestProd6DOp(OpTest): def setUp(self): self.op_type = "reduce_prod" self.python_api = raw_reduce_prod self.public_python_api = raw_reduce_prod self.prim_op_type = "prim" self.init_data_type() self.inputs = { 'X': np.random.random((5, 6, 2, 3, 4, 2)).astype(self.data_type) } self.attrs = {'dim': [2, 3, 4]} self.outputs = { 'Out': self.inputs['X'].prod(axis=tuple(self.attrs['dim'])) } def init_data_type(self): self.data_type = ( "float32" if core.is_compiled_with_rocm() else "float64" ) def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestProd8DOp(OpTest): def setUp(self): self.op_type = "reduce_prod" self.python_api = raw_reduce_prod self.public_python_api = raw_reduce_prod self.init_data_type() self.inputs = { 'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype( self.data_type ) } self.attrs = {'dim': [2, 3, 4]} self.outputs = { 'Out': self.inputs['X'].prod(axis=tuple(self.attrs['dim'])) } def init_data_type(self): self.data_type = ( "float32" if core.is_compiled_with_rocm() else "float64" ) def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestAllOp(OpTest): def setUp(self): self.op_type = "reduce_all" self.python_api = paddle.all self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")} self.outputs = {'Out': self.inputs['X'].all()} self.attrs = {'reduce_all': True} def test_check_output(self): self.check_output() class TestAllOp_ZeroDim(OpTest): def setUp(self): self.python_api = paddle.all self.op_type = "reduce_all" self.inputs = {'X': np.random.randint(0, 2, []).astype("bool")} self.outputs = {'Out': self.inputs['X'].all()} self.attrs = {'dim': [], 'reduce_all': True} def test_check_output(self): self.check_output() class TestAll8DOp(OpTest): def setUp(self): self.op_type = "reduce_all" self.python_api = paddle.all self.inputs = { 'X': np.random.randint(0, 2, (2, 5, 3, 2, 2, 3, 4, 2)).astype( "bool" ) } self.attrs = {'reduce_all': True, 'dim': (2, 3, 4)} self.outputs = {'Out': self.inputs['X'].all(axis=self.attrs['dim'])} def test_check_output(self): self.check_output() class TestAllOpWithDim(OpTest): def setUp(self): self.op_type = "reduce_all" self.python_api = paddle.all self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")} self.attrs = {'dim': (1,)} self.outputs = {'Out': self.inputs['X'].all(axis=self.attrs['dim'])} def test_check_output(self): self.check_output() class TestAll8DOpWithDim(OpTest): def setUp(self): self.op_type = "reduce_all" self.python_api = paddle.all self.inputs = { 'X': np.random.randint(0, 2, (2, 5, 3, 2, 2, 3, 4, 2)).astype( "bool" ) } self.attrs = {'dim': (1, 3, 4)} self.outputs = {'Out': self.inputs['X'].all(axis=self.attrs['dim'])} def test_check_output(self): self.check_output() class TestAllOpWithKeepDim(OpTest): def setUp(self): self.op_type = "reduce_all" self.python_api = paddle.all self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")} self.attrs = {'dim': [1], 'keep_dim': True} self.outputs = { 'Out': np.expand_dims(self.inputs['X'].all(axis=1), axis=1) } def test_check_output(self): self.check_output() class TestAll8DOpWithKeepDim(OpTest): def setUp(self): self.op_type = "reduce_all" self.python_api = paddle.all self.inputs = { 'X': np.random.randint(0, 2, (2, 5, 3, 2, 2, 3, 4, 2)).astype( "bool" ) } self.attrs = {'dim': (5,), 'keep_dim': True} self.outputs = { 'Out': np.expand_dims( self.inputs['X'].all(axis=self.attrs['dim']), axis=5 ) } def test_check_output(self): self.check_output() class TestAllOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # The input type of reduce_all_op must be Variable. input1 = 12 self.assertRaises(TypeError, paddle.all, input1) # The input dtype of reduce_all_op must be bool. input2 = paddle.static.data( name='input2', shape=[-1, 12, 10], dtype="int32" ) self.assertRaises(TypeError, paddle.all, input2) class TestAnyOp(OpTest): def setUp(self): self.op_type = "reduce_any" self.python_api = paddle.any self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")} self.outputs = {'Out': self.inputs['X'].any()} self.attrs = {'reduce_all': True} def test_check_output(self): self.check_output() class TestAnyOp_ZeroDim(OpTest): def setUp(self): self.python_api = paddle.any self.op_type = "reduce_any" self.inputs = {'X': np.random.randint(0, 2, []).astype("bool")} self.outputs = {'Out': self.inputs['X'].any()} self.attrs = {'dim': [], 'reduce_all': True} def test_check_output(self): self.check_output() class TestAny8DOp(OpTest): def setUp(self): self.op_type = "reduce_any" self.python_api = paddle.any self.inputs = { 'X': np.random.randint(0, 2, (2, 5, 3, 2, 2, 3, 4, 2)).astype( "bool" ) } self.attrs = {'reduce_all': True, 'dim': (3, 5, 4)} self.outputs = {'Out': self.inputs['X'].any(axis=self.attrs['dim'])} def test_check_output(self): self.check_output() class TestAnyOpWithDim(OpTest): def setUp(self): self.op_type = "reduce_any" self.python_api = paddle.any self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")} self.attrs = {'dim': [1]} self.outputs = {'Out': self.inputs['X'].any(axis=1)} def test_check_output(self): self.check_output() class TestAny8DOpWithDim(OpTest): def setUp(self): self.op_type = "reduce_any" self.python_api = paddle.any self.inputs = { 'X': np.random.randint(0, 2, (2, 5, 3, 2, 2, 3, 4, 2)).astype( "bool" ) } self.attrs = {'dim': (3, 6)} self.outputs = {'Out': self.inputs['X'].any(axis=self.attrs['dim'])} def test_check_output(self): self.check_output() class TestAnyOpWithKeepDim(OpTest): def setUp(self): self.op_type = "reduce_any" self.python_api = paddle.any self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")} self.attrs = {'dim': (1,), 'keep_dim': True} self.outputs = { 'Out': np.expand_dims( self.inputs['X'].any(axis=self.attrs['dim']), axis=1 ) } def test_check_output(self): self.check_output() class TestAny8DOpWithKeepDim(OpTest): def setUp(self): self.op_type = "reduce_any" self.python_api = paddle.any self.inputs = { 'X': np.random.randint(0, 2, (2, 5, 3, 2, 2, 3, 4, 2)).astype( "bool" ) } self.attrs = {'dim': (1,), 'keep_dim': True} self.outputs = { 'Out': np.expand_dims( self.inputs['X'].any(axis=self.attrs['dim']), axis=1 ) } def test_check_output(self): self.check_output() class TestAnyOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # The input type of reduce_any_op must be Variable. input1 = 12 self.assertRaises(TypeError, paddle.any, input1) # The input dtype of reduce_any_op must be bool. input2 = paddle.static.data( name='input2', shape=[-1, 12, 10], dtype="int32" ) self.assertRaises(TypeError, paddle.any, input2) class Test1DReduce(OpTest): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.inputs = {'X': np.random.random(120).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} self.enable_cinn = True def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class Test2DReduce0(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.attrs = {'dim': [0]} self.inputs = {'X': np.random.random((20, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} class Test2DReduce1(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.attrs = {'dim': [1]} self.inputs = {'X': np.random.random((20, 10)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class Test3DReduce0(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.attrs = {'dim': [1]} self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class Test3DReduce1(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.attrs = {'dim': [2]} self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class Test3DReduce2(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.attrs = {'dim': [-2]} self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class Test3DReduce3(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.attrs = {'dim': [1, 2]} self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } def reduce_sum_wrapper2(x, axis=[0], dtype=None, keepdim=False): return paddle._C_ops.sum(x, axis, dtype, keepdim) class Test8DReduce0(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.python_api = reduce_sum_wrapper2 self.attrs = {'dim': (4, 2, 3)} self.inputs = { 'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype("float64") } self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestKeepDimReduce(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [1], 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum( axis=tuple(self.attrs['dim']), keepdims=self.attrs['keep_dim'] ) } class TestKeepDimReduceForEager(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.python_api = reduce_sum_wrapper2 self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [1], 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum( axis=tuple(self.attrs['dim']), keepdims=self.attrs['keep_dim'] ) } def test_check_grad(self): self.check_grad(['X'], 'Out') class TestKeepDim8DReduce(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.python_api = reduce_sum_wrapper2 self.inputs = { 'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype("float64") } self.attrs = {'dim': (3, 4, 5), 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum( axis=tuple(self.attrs['dim']), keepdims=self.attrs['keep_dim'] ) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') @skip_check_grad_ci( reason="reduce_max is discontinuous non-derivable function," " its gradient check is not supported by unittest framework." ) class TestReduceMaxOpMultiAxises(OpTest): """Remove Max with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_max" self.prim_op_type = "prim" self.python_api = paddle.max self.public_python_api = paddle.max self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [-2, -1]} self.outputs = { 'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() def test_check_grad(self): # only composite op support gradient check of reduce_max self.check_grad( ['X'], 'Out', check_prim=True, only_check_prim=True, ) @skip_check_grad_ci( reason="reduce_min is discontinuous non-derivable function," " its gradient check is not supported by unittest framework." ) class TestReduceMinOpMultiAxises(OpTest): """Remove Min with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_min" self.python_api = paddle.min self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [1, 2]} self.outputs = { 'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() class TestKeepDimReduceSumMultiAxises(OpTest): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [-2, -1], 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum( axis=tuple(self.attrs['dim']), keepdims=True ) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestKeepDimReduceSumMultiAxisesForEager(OpTest): def setUp(self): self.op_type = "reduce_sum" self.python_api = reduce_sum_wrapper2 self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [-2, -1], 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum( axis=tuple(self.attrs['dim']), keepdims=True ) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestReduceSumWithDimOne(OpTest): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")} self.attrs = {'dim': [1, 2], 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum( axis=tuple(self.attrs['dim']), keepdims=True ) } self.enable_cinn = True def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestReduceSumWithDimOneForEager(OpTest): def setUp(self): self.op_type = "reduce_sum" self.python_api = reduce_sum_wrapper2 self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")} self.attrs = {'dim': [1, 2], 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum( axis=tuple(self.attrs['dim']), keepdims=True ) } self.enable_cinn = True def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestReduceSumWithNumelOne(OpTest): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.inputs = {'X': np.random.random((100, 1)).astype("float64")} self.attrs = {'dim': [1], 'keep_dim': False} self.outputs = { 'Out': self.inputs['X'].sum( axis=tuple(self.attrs['dim']), keepdims=False ) } self.enable_cinn = True def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=False) class TestReduceAll(OpTest): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")} self.attrs = {'reduce_all': True, 'keep_dim': False} self.outputs = {'Out': self.inputs['X'].sum()} self.enable_cinn = True def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestReduceAllFp32(OpTest): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.inputs = {'X': np.random.random((100, 1, 1)).astype("float32")} self.attrs = {'reduce_all': True, 'keep_dim': False} self.outputs = {'Out': self.inputs['X'].sum()} self.enable_cinn = True def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class Test1DReduceWithAxes1(OpTest): def setUp(self): self.op_type = "reduce_sum" self.python_api = paddle.sum self.public_python_api = paddle.sum self.prim_op_type = "prim" self.inputs = {'X': np.random.random(100).astype("float64")} self.attrs = {'dim': [0], 'keep_dim': False} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} self.enable_cinn = True def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) def reduce_sum_wrapper(x, axis=None, out_dtype=None, keepdim=False, name=None): return paddle.sum(x, axis, "float64", keepdim, name) class TestReduceWithDtype(OpTest): def setUp(self): self.op_type = "reduce_sum" self.python_api = reduce_sum_wrapper self.public_python_api = reduce_sum_wrapper self.prim_op_type = "prim" self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum().astype('float64')} self.attrs = {'reduce_all': True} self.attrs.update( { 'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)), 'out_dtype': int(convert_np_dtype_to_dtype_(np.float64)), } ) def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestReduceWithDtype1(TestReduceWithDtype): def setUp(self): self.op_type = "reduce_sum" self.python_api = reduce_sum_wrapper self.public_python_api = reduce_sum_wrapper self.prim_op_type = "prim" self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum(axis=1)} self.attrs = {'dim': [1]} self.attrs.update( { 'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)), 'out_dtype': int(convert_np_dtype_to_dtype_(np.float64)), } ) # cinn op_mapper not support in_dtype/out_dtype attr self.enable_cinn = False def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestReduceWithDtype2(TestReduceWithDtype): def setUp(self): self.op_type = "reduce_sum" self.prim_op_type = "prim" self.python_api = reduce_sum_wrapper self.public_python_api = reduce_sum_wrapper self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum(axis=1, keepdims=True)} self.attrs = {'dim': [1], 'keep_dim': True} self.attrs.update( { 'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)), 'out_dtype': int(convert_np_dtype_to_dtype_(np.float64)), } ) # cinn op_mapper not support in_dtype/out_dtype attr self.enable_cinn = False def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestReduceSumOpError(unittest.TestCase): def test_errors(self): with paddle.fluid.framework._static_guard(): with program_guard(Program(), Program()): # The input type of reduce_sum_op must be Variable. x1 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace() ) self.assertRaises(TypeError, paddle.sum, x1) # The input dtype of reduce_sum_op must be float32 or float64 or int32 or int64. x2 = paddle.static.data(name='x2', shape=[-1, 4], dtype="uint8") self.assertRaises(TypeError, paddle.sum, x2) class API_TestSumOp(unittest.TestCase): def run_static( self, shape, x_dtype, attr_axis, attr_dtype=None, np_axis=None ): if np_axis is None: np_axis = attr_axis places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for place in places: with fluid.program_guard(fluid.Program(), fluid.Program()): data = paddle.static.data("data", shape=shape, dtype=x_dtype) result_sum = paddle.sum( x=data, axis=attr_axis, dtype=attr_dtype ) exe = fluid.Executor(place) input_data = np.random.rand(*shape).astype(x_dtype) (res,) = exe.run( feed={"data": input_data}, fetch_list=[result_sum] ) np.testing.assert_allclose( res, np.sum(input_data.astype(attr_dtype), axis=np_axis), rtol=1e-05, ) def test_static(self): shape = [10, 10] axis = 1 self.run_static(shape, "bool", axis, attr_dtype=None) self.run_static(shape, "bool", axis, attr_dtype="int32") self.run_static(shape, "bool", axis, attr_dtype="int64") self.run_static(shape, "bool", axis, attr_dtype="float16") self.run_static(shape, "int32", axis, attr_dtype=None) self.run_static(shape, "int32", axis, attr_dtype="int32") self.run_static(shape, "int32", axis, attr_dtype="int64") self.run_static(shape, "int32", axis, attr_dtype="float64") self.run_static(shape, "int64", axis, attr_dtype=None) self.run_static(shape, "int64", axis, attr_dtype="int64") self.run_static(shape, "int64", axis, attr_dtype="int32") self.run_static(shape, "float32", axis, attr_dtype=None) self.run_static(shape, "float32", axis, attr_dtype="float32") self.run_static(shape, "float32", axis, attr_dtype="float64") self.run_static(shape, "float32", axis, attr_dtype="int64") self.run_static(shape, "float64", axis, attr_dtype=None) self.run_static(shape, "float64", axis, attr_dtype="float32") self.run_static(shape, "float64", axis, attr_dtype="float64") shape = [5, 5, 5] self.run_static(shape, "int32", (0, 1), attr_dtype="int32") self.run_static( shape, "int32", (), attr_dtype="int32", np_axis=(0, 1, 2) ) def test_dygraph(self): np_x = np.random.random([2, 3, 4]).astype('int32') with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(np_x) out0 = paddle.sum(x).numpy() out1 = paddle.sum(x, axis=0).numpy() out2 = paddle.sum(x, axis=(0, 1)).numpy() out3 = paddle.sum(x, axis=(0, 1, 2)).numpy() self.assertTrue((out0 == np.sum(np_x, axis=(0, 1, 2))).all()) self.assertTrue((out1 == np.sum(np_x, axis=0)).all()) self.assertTrue((out2 == np.sum(np_x, axis=(0, 1))).all()) self.assertTrue((out3 == np.sum(np_x, axis=(0, 1, 2))).all()) class TestAllAPI(unittest.TestCase): def setUp(self): np.random.seed(123) paddle.enable_static() self.places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): self.places.append(fluid.CUDAPlace(0)) def check_static_result(self, place): with fluid.program_guard(fluid.Program(), fluid.Program()): input = paddle.static.data(name="input", shape=[4, 4], dtype="bool") result = paddle.all(x=input) input_np = np.random.randint(0, 2, [4, 4]).astype("bool") exe = fluid.Executor(place) fetches = exe.run( fluid.default_main_program(), feed={"input": input_np}, fetch_list=[result], ) np.testing.assert_allclose(fetches[0], np.all(input_np), rtol=1e-05) def test_static(self): for place in self.places: self.check_static_result(place=place) def test_dygraph(self): paddle.disable_static() for place in self.places: with fluid.dygraph.guard(place): np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool_) x = paddle.assign(np_x) x = paddle.cast(x, 'bool') out1 = paddle.all(x) np_out1 = out1.numpy() expect_res1 = np.all(np_x) self.assertTrue((np_out1 == expect_res1).all()) out2 = paddle.all(x, axis=0) np_out2 = out2.numpy() expect_res2 = np.all(np_x, axis=0) self.assertTrue((np_out2 == expect_res2).all()) out3 = paddle.all(x, axis=-1) np_out3 = out3.numpy() expect_res3 = np.all(np_x, axis=-1) self.assertTrue((np_out3 == expect_res3).all()) out4 = paddle.all(x, axis=1, keepdim=True) np_out4 = out4.numpy() expect_res4 = np.all(np_x, axis=1, keepdims=True) self.assertTrue((np_out4 == expect_res4).all()) paddle.enable_static() class TestAnyAPI(unittest.TestCase): def setUp(self): np.random.seed(123) paddle.enable_static() self.places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): self.places.append(fluid.CUDAPlace(0)) def check_static_result(self, place): with fluid.program_guard(fluid.Program(), fluid.Program()): input = paddle.static.data(name="input", shape=[4, 4], dtype="bool") result = paddle.any(x=input) input_np = np.random.randint(0, 2, [4, 4]).astype("bool") exe = fluid.Executor(place) fetches = exe.run( fluid.default_main_program(), feed={"input": input_np}, fetch_list=[result], ) np.testing.assert_allclose(fetches[0], np.any(input_np), rtol=1e-05) def test_static(self): for place in self.places: self.check_static_result(place=place) def test_dygraph(self): paddle.disable_static() for place in self.places: with fluid.dygraph.guard(place): np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool_) x = paddle.assign(np_x) x = paddle.cast(x, 'bool') out1 = paddle.any(x) np_out1 = out1.numpy() expect_res1 = np.any(np_x) self.assertTrue((np_out1 == expect_res1).all()) out2 = paddle.any(x, axis=0) np_out2 = out2.numpy() expect_res2 = np.any(np_x, axis=0) self.assertTrue((np_out2 == expect_res2).all()) out3 = paddle.any(x, axis=-1) np_out3 = out3.numpy() expect_res3 = np.any(np_x, axis=-1) self.assertTrue((np_out3 == expect_res3).all()) out4 = paddle.any(x, axis=1, keepdim=True) np_out4 = out4.numpy() expect_res4 = np.any(np_x, axis=1, keepdims=True) self.assertTrue((np_out4 == expect_res4).all()) paddle.enable_static() class TestAllZeroError(unittest.TestCase): def test_errors(self): with paddle.fluid.dygraph.guard(): def test_0_size(): array = np.array([], dtype=np.float32) x = paddle.to_tensor(np.reshape(array, [0, 0, 0]), dtype='bool') paddle.all(x, axis=1) self.assertRaises(ValueError, test_0_size) if __name__ == '__main__': paddle.enable_static() unittest.main()