# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle.fluid.core as core from paddle.fluid.executor import Executor import paddle.fluid as fluid import paddle.fluid.layers as layers from paddle.fluid.backward import append_backward from paddle.fluid.framework import switch_main_program from paddle.fluid.framework import Program import numpy as np from simple_nets import simple_fc_net, init_data from paddle.fluid import compiler, Program, program_guard from op_test import OpTest class TestPrintOpCPU(unittest.TestCase): def setUp(self): self.place = core.CPUPlace() self.x_tensor = core.LoDTensor() tensor_np = np.random.random(size=(2, 3)).astype('float32') self.x_tensor.set(tensor_np, self.place) self.x_tensor.set_recursive_sequence_lengths([[1, 1]]) def build_network(self, only_forward, **kargs): x = layers.data('x', shape=[3], dtype='float32', lod_level=1) x.stop_gradient = False layers.Print(input=x, **kargs) loss = layers.mean(x) append_backward(loss=loss) return loss def test_forward(self): switch_main_program(Program()) printed = self.build_network(True, print_phase='forward') exe = Executor(self.place) outs = exe.run(feed={'x': self.x_tensor}, fetch_list=[printed], return_numpy=False) def test_backward(self): switch_main_program(Program()) loss = self.build_network(False, print_phase='backward') exe = Executor(self.place) outs = exe.run(feed={'x': self.x_tensor}, fetch_list=[loss], return_numpy=False) def test_all_parameters(self): x = layers.data('x', shape=[3], dtype='float32', lod_level=1) x.stop_gradient = False for print_tensor_name in [True, False]: for print_tensor_type in [True, False]: for print_tensor_shape in [True, False]: for print_tensor_lod in [True, False]: layers.Print( input=x, print_tensor_name=print_tensor_name, print_tensor_type=print_tensor_type, print_tensor_shape=print_tensor_shape, print_tensor_lod=print_tensor_lod, ) loss = layers.mean(x) append_backward(loss=loss) exe = Executor(self.place) outs = exe.run(feed={'x': self.x_tensor}, fetch_list=[loss], return_numpy=False) def test_no_summarize(self): switch_main_program(Program()) printed = self.build_network(True, summarize=-1, print_phase='forward') exe = Executor(self.place) outs = exe.run(feed={'x': self.x_tensor}, fetch_list=[printed], return_numpy=False) class TestPrintOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # The input type of Print_op must be Variable. x1 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace()) self.assertRaises(TypeError, fluid.layers.Print, x1) # The input dtype of Print_op must be float32, float64, int32_t, int64_t or bool. x2 = fluid.layers.data(name='x2', shape=[4], dtype="float16") self.assertRaises(TypeError, fluid.layers.Print, x2) @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestPrintOpGPU(TestPrintOpCPU): def setUp(self): self.place = core.CUDAPlace(0) self.x_tensor = core.LoDTensor() tensor_np = np.random.random(size=(2, 3)).astype('float32') self.x_tensor.set(tensor_np, self.place) self.x_tensor.set_recursive_sequence_lengths([[1, 1]]) class TestPrintOpBackward(unittest.TestCase): def check_backward(self, use_cuda): main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): loss = simple_fc_net() loss = fluid.layers.Print(loss) fluid.optimizer.Adam().minimize(loss) print_ops = [op for op in main.blocks[0].ops if op.type == u'print'] assert len(print_ops) == 2, "The number of print op should be 2" place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup) binary = fluid.compiler.CompiledProgram(main).with_data_parallel( loss_name=loss.name) img, label = init_data() feed_dict = {"image": img, "label": label} exe.run(binary, feed_dict) def test_fw_bw(self): if core.is_compiled_with_cuda(): self.check_backward(use_cuda=True) self.check_backward(use_cuda=False) if __name__ == '__main__': unittest.main()