# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddle.autograd.backward import grad from paddle.decomposition import decompose from paddle.framework import core paddle.enable_static() class TestPrimMode(unittest.TestCase): def setUp(self): np.random.seed(2023) self.shape_x = [8, 16, 32, 64] self.shape_y = [8, 16, 32, 64] self.x = np.random.random(self.shape_x).astype("float32") self.y = np.random.random(self.shape_y).astype("float32") def base_net(self, flag=None): if flag == "forward": core._set_prim_forward_enabled(True) elif flag == "backward": core._set_prim_backward_enabled(True) elif flag == "all": core._set_prim_all_enabled(True) main_program = paddle.static.Program() with paddle.static.program_guard(main_program): x = paddle.static.data('x', self.shape_x, dtype='float32') y = paddle.static.data('y', self.shape_y, dtype='float32') x.stop_gradient = False y.stop_gradient = False divide_out = paddle.divide(x, y) sum_out = paddle.mean(divide_out, axis=0) [new_out] = decompose(main_program, [sum_out]) gradients = grad(new_out, (x, y)) exe = paddle.static.Executor() [fwd, dx, dy] = exe.run( feed={'x': self.x, 'y': self.y}, fetch_list=[new_out, gradients] ) whole_ops = [op.name() for op in main_program.block().ops] if flag == "forward": core._set_prim_forward_enabled(False) assert 'pd.mean' not in whole_ops and 'pd.divide_grad' in whole_ops elif flag == "backward": core._set_prim_backward_enabled(False) assert 'pd.mean' in whole_ops and 'pd.divide_grad' not in whole_ops elif flag == "all": core._set_prim_all_enabled(False) assert ( 'pd.mean' not in whole_ops and 'pd.divide_grad' not in whole_ops ) else: assert 'pd.mean' in whole_ops and 'pd.divide_grad' in whole_ops return fwd, dx, dy def test_prim_forward(self): res_ref = self.base_net() res = self.base_net("forward") for ref, actual in zip(res_ref, res): np.testing.assert_equal(ref, actual) def test_prim_backward(self): res_ref = self.base_net() res = self.base_net("backward") for ref, actual in zip(res_ref, res): np.testing.assert_allclose(ref, actual, rtol=1e-6) def test_prim_all(self): res_ref = self.base_net() res = self.base_net("all") for ref, actual in zip(res_ref, res): np.testing.assert_allclose(ref, actual, rtol=1e-6) if __name__ == "__main__": unittest.main()