# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import ( OpTest, OpTestTool, convert_float_to_uint16, skip_check_grad_ci, ) import paddle from paddle.fluid import core paddle.enable_static() @OpTestTool.skip_if_not_cpu_bf16() class TestReduceSumDefaultBF16OneDNNOp(OpTest): def setUp(self): self.op_type = "reduce_sum" self.use_mkldnn = True self.x_fp32 = np.random.random((5, 6, 10)).astype("float32") self.x_bf16 = convert_float_to_uint16(self.x_fp32) self.inputs = {'X': self.x_bf16} self.outputs = {'Out': self.x_fp32.sum(axis=0)} self.attrs = {'use_mkldnn': self.use_mkldnn} def test_check_output(self): self.check_output(check_dygraph=False, check_new_ir=False) def calculate_grads(self): tmp_tensor = np.zeros(self.x_fp32.shape).astype("float32") prod_of_reduced_dims = self.inputs['X'].shape[0] axis = 0 if "dim" in self.attrs: prod_of_reduced_dims = 1 axis = tuple(self.attrs['dim']) for i in range(len(axis)): ax = axis[i] if axis[i] < 0: ax = len(axis) + axis[i] prod_of_reduced_dims *= self.inputs['X'].shape[ax] if 'reduce_all' in self.attrs: if self.attrs['reduce_all'] is True: axis = None prod_of_reduced_dims = np.asarray(self.inputs['X'].shape).prod() keepdim = False if 'keep_dim' in self.attrs: keepdim = True self.grad_Out = self.x_fp32.sum(axis=axis, keepdims=keepdim) self.grad_Out = np.atleast_1d(self.grad_Out) self.grad_X = tmp_tensor + self.grad_Out # broadcast grad if self.op_type == 'reduce_mean': self.grad_X /= prod_of_reduced_dims class TestReduceDefaultWithGradBF16OneDNNOp(TestReduceSumDefaultBF16OneDNNOp): def test_check_grad(self): self.calculate_grads() self.check_grad_with_place( core.CPUPlace(), ["X"], "Out", check_dygraph=False, user_defined_grads=[self.grad_X], user_defined_grad_outputs=[convert_float_to_uint16(self.grad_Out)], check_new_ir=False, ) class TestReduceSum4DReduceAllDimAttributeBF16OneDNNOp( TestReduceDefaultWithGradBF16OneDNNOp ): def setUp(self): self.op_type = "reduce_sum" self.use_mkldnn = True self.x_fp32 = np.random.normal(size=(2, 3, 5, 6)).astype('float32') self.x_bf16 = convert_float_to_uint16(self.x_fp32) self.inputs = {'X': self.x_bf16} self.attrs = {'use_mkldnn': self.use_mkldnn, 'dim': [0, 1, 2, 3]} self.outputs = {'Out': self.x_fp32.sum(axis=tuple(self.attrs['dim']))} class TestReduceSum4DReduceAllWithoutReduceAllAttributeNegativeDimsBF16OneDNNOp( TestReduceDefaultWithGradBF16OneDNNOp ): def setUp(self): self.op_type = "reduce_sum" self.use_mkldnn = True self.x_fp32 = np.random.normal(size=(4, 7, 6, 6)).astype('float32') self.x_bf16 = convert_float_to_uint16(self.x_fp32) self.inputs = {'X': self.x_bf16} self.attrs = {'use_mkldnn': self.use_mkldnn, 'dim': [-1, -2, -3, -4]} self.outputs = {'Out': self.x_fp32.sum(axis=tuple(self.attrs['dim']))} class TestReduceSum5DReduceAllKeepDimsBF16OneDNNOp( TestReduceDefaultWithGradBF16OneDNNOp ): def setUp(self): self.op_type = "reduce_sum" self.use_mkldnn = True self.x_fp32 = np.random.normal(size=(2, 5, 3, 2, 5)).astype('float32') self.x_bf16 = convert_float_to_uint16(self.x_fp32) self.inputs = {'X': self.x_bf16} self.attrs = {'reduce_all': True, 'keep_dim': True, 'use_mkldnn': True} self.outputs = {'Out': self.x_fp32.sum(keepdims=self.attrs['keep_dim'])} class TestReduceSum4DReduceAllBF16OneDNNOp( TestReduceDefaultWithGradBF16OneDNNOp ): def setUp(self): self.op_type = "reduce_sum" self.use_mkldnn = True self.x_fp32 = np.random.normal(size=(4, 5, 4, 5)).astype('float32') self.x_bf16 = convert_float_to_uint16(self.x_fp32) self.inputs = {'X': self.x_bf16} self.attrs = {'reduce_all': True, 'use_mkldnn': self.use_mkldnn} self.outputs = {'Out': self.x_fp32.sum()} @skip_check_grad_ci( reason="reduce_max is discontinuous non-derivable function," " its gradient check is not supported by unittest framework." ) class TestReduceMax3DBF16OneDNNOp(TestReduceSumDefaultBF16OneDNNOp): """Remove Max with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_max" self.use_mkldnn = True self.x_fp32 = np.random.random((5, 6, 10)).astype("float32") self.x_bf16 = convert_float_to_uint16(self.x_fp32) self.inputs = {'X': self.x_bf16} self.attrs = {'dim': [-1], 'use_mkldnn': self.use_mkldnn} self.outputs = {'Out': self.x_fp32.max(axis=tuple(self.attrs['dim']))} @skip_check_grad_ci( reason="reduce_max is discontinuous non-derivable function," " its gradient check is not supported by unittest framework." ) class TestReduceMax4DNegativeAndPositiveDimsBF16OneDNNOp( TestReduceSumDefaultBF16OneDNNOp ): """Remove Max with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_max" self.use_mkldnn = True self.x_fp32 = np.random.random((5, 6, 10, 9)).astype("float32") self.x_bf16 = convert_float_to_uint16(self.x_fp32) self.inputs = {'X': self.x_bf16} self.attrs = {'dim': [-1, 0, 1], 'use_mkldnn': self.use_mkldnn} self.outputs = {'Out': self.x_fp32.max(axis=tuple(self.attrs['dim']))} @skip_check_grad_ci( reason="reduce_min is discontinuous non-derivable function," " its gradient check is not supported by unittest framework." ) class TestReduceMin3DBF16OneDNNOp(TestReduceSumDefaultBF16OneDNNOp): """Remove Min with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_min" self.use_mkldnn = True self.x_fp32 = np.random.random((5, 6, 10)).astype("float32") self.x_bf16 = convert_float_to_uint16(self.x_fp32) self.inputs = {'X': self.x_bf16} self.attrs = {'dim': [2], 'use_mkldnn': self.use_mkldnn} self.outputs = {'Out': self.x_fp32.min(axis=tuple(self.attrs['dim']))} class TestReduceMean3DBF16OneDNNOp(TestReduceDefaultWithGradBF16OneDNNOp): def setUp(self): self.op_type = "reduce_mean" self.use_mkldnn = True self.x_fp32 = np.random.random((5, 6, 10)).astype("float32") self.x_bf16 = convert_float_to_uint16(self.x_fp32) self.inputs = {'X': self.x_bf16} self.attrs = {'use_mkldnn': self.use_mkldnn} self.outputs = {'Out': self.x_fp32.sum(axis=0) / self.x_fp32.shape[0]} class TestReduceMean4DBF16OneDNNOp(TestReduceDefaultWithGradBF16OneDNNOp): def setUp(self): self.op_type = "reduce_mean" self.use_mkldnn = True self.x_fp32 = np.random.random((5, 6, 3, 5)).astype("float32") self.x_bf16 = convert_float_to_uint16(self.x_fp32) self.inputs = {'X': self.x_bf16} self.attrs = {'use_mkldnn': self.use_mkldnn, 'dim': [0, 1]} self.outputs = { 'Out': self.x_fp32.sum(axis=tuple(self.attrs['dim'])) / (self.x_fp32.shape[0] * self.x_fp32.shape[1]) } if __name__ == '__main__': paddle.enable_static() unittest.main()