// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include namespace paddle { // Data type. enum PaddleDType { FLOAT32, INT64, // TODO(Superjomn) support more data types if needed. }; /* * Memory menage for PaddleTensor. * The PaddleBuf holds a buffer for data input or output. The memory can be * allocated by user or by PaddleBuf itself, but in any case, the PaddleBuf * should be reused for better performance. * * For user allocated memory, the following API can be used: * - PaddleBuf(void* data, size_t length) to set an external memory by * specifying * the memory address and length. * - Reset(void* data, size_t length) to reset the PaddleBuf with an external * memory. * ATTENTION, for user allocated memory, deallocation should be done by users * externally after the program finished. The PaddleBuf won't do any allocation * or deallocation. * * To have the PaddleBuf allocate and manage the memory: * - PaddleBuf(size_t length) will allocate a memory of size `length`. * - Resize(size_t length) resize the memory to no less than `length`, ATTENTION * if the allocated memory is larger than `length`, nothing will done. */ class PaddleBuf { public: // PaddleBuf allocate memory internally, and manage it. explicit PaddleBuf(size_t length) : data_(new char[length]), length_(length), memory_owned_(true) {} // Set external memory, the PaddleBuf won't manage it. PaddleBuf(void* data, size_t length) : data_(data), length_(length), memory_owned_{false} {} // Copy only available when memory is managed externally. explicit PaddleBuf(const PaddleBuf&); // Resize the memory. void Resize(size_t length); // Reset to external memory, with address and length set. void Reset(void* data, size_t length); // Tell whether the buffer is empty. bool empty() const { return length_ == 0; } // Get the memory address. void* data() const { return data_; } // Get the memory length. size_t length() const { return length_; } ~PaddleBuf() { Free(); } PaddleBuf& operator=(const PaddleBuf&); PaddleBuf& operator=(PaddleBuf&&); PaddleBuf() = default; PaddleBuf(PaddleBuf&& other); private: void Free(); void* data_{nullptr}; // pointer to the data memory. size_t length_{0}; // number of memory bytes. bool memory_owned_{true}; }; // Basic input and output data structure for PaddlePredictor. struct PaddleTensor { PaddleTensor() = default; std::string name; // variable name. std::vector shape; PaddleBuf data; // blob of data. PaddleDType dtype; std::vector> lod; // Tensor+LoD equals LoDTensor }; enum class PaddlePlace { kUNK = -1, kCPU, kGPU }; // Tensor without copy, currently only supports AnalysisPredictor. class ZeroCopyTensor { public: void Reshape(const std::vector& shape); // Get the memory in CPU or GPU with specific data type, should Reshape first // to tell the data size. // Once can directly call this data to feed the data. // This is for write the input tensor. template T* mutable_data(PaddlePlace place); // Get the memory directly, will return the place and memory size by pointer. // This is for reading the output tensor. template T* data(PaddlePlace* place, int* size) const; std::vector shape() const; void SetLoD(const std::vector>& x); std::vector> lod() const; const std::string& name() const { return name_; } protected: explicit ZeroCopyTensor(void* scope) : scope_{scope} {} void SetName(const std::string& name) { name_ = name; } void* FindTensor() const; private: std::string name_; bool input_or_output_; friend class AnalysisPredictor; void* scope_{nullptr}; }; /* * A simple Inference API for Paddle. */ class PaddlePredictor { public: struct Config; PaddlePredictor() = default; PaddlePredictor(const PaddlePredictor&) = delete; PaddlePredictor& operator=(const PaddlePredictor&) = delete; // Predict an record. // The caller should be responsible for allocating and releasing the memory of // `inputs`. `inputs` should be available until Run returns. Caller should be // responsible for the output tensor's buffer, either allocated or passed from // outside. virtual bool Run(const std::vector& inputs, std::vector* output_data, int batch_size = -1) = 0; // Zero copy input and output optimization. // Get the input or output tensors, and operate on their memory directly, // without copy. virtual std::unique_ptr GetInputTensor( const std::string& name) { return nullptr; } virtual std::unique_ptr GetOutputTensor( const std::string& name) { return nullptr; } virtual bool ZeroCopyRun() { return false; } // Clone a predictor that share the model weights, the Cloned predictor should // be thread-safe. virtual std::unique_ptr Clone() = 0; // Destroy the Predictor. virtual ~PaddlePredictor() = default; // The common configs for all the predictors. struct Config { std::string model_dir; // path to the model directory. }; }; struct NativeConfig : public PaddlePredictor::Config { // GPU related fields. bool use_gpu{false}; int device{0}; float fraction_of_gpu_memory{-1.f}; // Change to a float in (0,1] if needed. // Specify the exact path of program and parameter files. std::string prog_file; std::string param_file; // Specify the variable's name of each input if input tensors don't follow the // `feeds` and `fetches` of the phase `save_inference_model`. bool specify_input_name{false}; // Set and get the number of cpu threads. void SetCPUNumThreads(int cpu_num_threads) { cpu_num_threads_ = cpu_num_threads; } int GetCPUNumThreads() const { return cpu_num_threads_; } protected: int cpu_num_threads_{1}; // number of cpu threads for each instance. }; // A factory to help create different predictors. // // Usage: // // NativeConfig config; // ... // change the configs. // auto native_predictor = CreatePaddlePredictor(config); // // FOR EXTENSION DEVELOPER: // Different predictors are designated by config type. Similar configs can be // merged, but there shouldn't be a huge config containing different fields for // more than one kind of predictors. template std::unique_ptr CreatePaddlePredictor(const ConfigT& config); // NOTE The following APIs are too trivial, we will discard it in the following // versions. enum class PaddleEngineKind { kNative = 0, // Use the native Fluid facility. kAutoMixedTensorRT, // Automatically mix Fluid with TensorRT. kAnalysis, // More optimization. kAnakin // Use Anakin for inference, not mature yet. }; template std::unique_ptr CreatePaddlePredictor(const ConfigT& config); int PaddleDtypeSize(PaddleDType dtype); } // namespace paddle