/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef PADDLE_WITH_ASCEND_CL #include #include #include "paddle/fluid/operators/controlflow/compare_op.h" #include "paddle/fluid/operators/metrics/accuracy_op.h" #include "paddle/fluid/operators/npu_op_runner.h" namespace paddle { namespace operators { template class AccuracyNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* pred = ctx.Input("Out"); auto* label = ctx.Input("Label"); // auto* logits = ctx.Input("Indices"); auto* acc = ctx.Output("Accuracy"); auto* correct = ctx.Output("Correct"); auto* total = ctx.Output("Total"); auto stream = ctx.template device_context() .stream(); // cast pred Tensor tmp_pred(pred->type()); tmp_pred.Resize(pred->dims()); tmp_pred.mutable_data(ctx.GetPlace()); auto runner_cast_pred = NpuOpRunner("Cast", {*pred}, {tmp_pred}, {{"dst_type", static_cast(ACL_INT32)}}); runner_cast_pred.Run(stream); // cast label Tensor tmp_label(label->type()); tmp_label.Resize(label->dims()); tmp_label.mutable_data(ctx.GetPlace()); auto runner_cast_label = NpuOpRunner("Cast", {*label}, {tmp_label}, {{"dst_type", static_cast(ACL_INT32)}}); runner_cast_label.Run(stream); // equal Tensor tmp_equal(label->type()); tmp_equal.Resize(label->dims()); tmp_equal.mutable_data(ctx.GetPlace()); auto runner_equal = NpuOpRunner("Equal", {tmp_pred, tmp_label}, {tmp_equal}, {}); runner_equal.Run(stream); // cast equal Tensor tmp_equal_cast(label->type()); tmp_equal_cast.Resize(label->dims()); tmp_equal_cast.mutable_data(ctx.GetPlace()); auto runner_cast_equal = NpuOpRunner("Cast", {tmp_equal}, {tmp_equal_cast}, {{"dst_type", static_cast(ACL_FLOAT)}}); runner_cast_equal.Run(stream); // acc acc->mutable_data(ctx.GetPlace()); std::vector axes_vec_1; auto runner_acc = NpuOpRunner("ReduceMeanD", {tmp_equal_cast}, {*acc}, {{"keep_dims", false}, {"axes", axes_vec_1}}); runner_acc.Run(stream); // correct correct->mutable_data(ctx.GetPlace()); std::vector axes_vec_2; auto runner_correct = NpuOpRunner("ReduceSumD", {tmp_equal_cast}, {*correct}, {{"keep_dims", false}, {"axes", axes_vec_2}}); runner_correct.Run(stream); // ones_tensor Tensor ones_tensor(label->type()); ones_tensor.Resize(label->dims()); ones_tensor.mutable_data(ctx.GetPlace()); auto runner_oneslike = NpuOpRunner("OnesLike", {tmp_label}, {ones_tensor}, {}); runner_oneslike.Run(stream); // ones_tensor_cast Tensor ones_tensor_cast(label->type()); ones_tensor_cast.Resize(label->dims()); ones_tensor_cast.mutable_data(ctx.GetPlace()); auto runner_ones_cast = NpuOpRunner("Cast", {ones_tensor}, {ones_tensor_cast}, {{"dst_type", static_cast(ACL_FLOAT)}}); runner_ones_cast.Run(stream); // total total->mutable_data(ctx.GetPlace()); std::vector axes_vec_3; auto runner_total = NpuOpRunner("ReduceSumD", {ones_tensor_cast}, {*total}, {{"keep_dims", false}, {"axes", axes_vec_3}}); runner_total.Run(stream); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_NPU_KERNEL( accuracy, ops::AccuracyNPUKernel, ops::AccuracyNPUKernel, ops::AccuracyNPUKernel); #endif