/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include namespace paddle { namespace operators { template inline std::vector GetDataFromTensor(const framework::Tensor* x) { std::vector vec_new_data; if (x->type() == framework::proto::VarType::INT32) { auto* data = x->data(); framework::Tensor cpu_attr_tensor; if (!platform::is_cpu_place(x->place())) { TensorCopySync(*x, platform::CPUPlace(), &cpu_attr_tensor); data = cpu_attr_tensor.data(); } vec_new_data = std::vector(data, data + x->numel()); } else if (x->type() == framework::proto::VarType::INT64) { auto* data = x->data(); framework::Tensor cpu_attr_tensor; if (!platform::is_cpu_place(x->place())) { TensorCopySync(*x, platform::CPUPlace(), &cpu_attr_tensor); data = cpu_attr_tensor.data(); } // NOTE: Converting int64 to int32 may cause data overflow. vec_new_data = std::vector(data, data + x->numel()); } else { PADDLE_THROW(platform::errors::InvalidArgument( "The dtype of Tensor must be int32 or int64, but received: %s", x->type())); } return vec_new_data; } template inline std::vector GetDataFromTensorList( const std::vector& list_tensor) { std::vector vec_new_data; for (size_t i = 0; i < list_tensor.size(); ++i) { auto tensor = list_tensor[i]; PADDLE_ENFORCE_EQ(tensor->dims(), framework::make_ddim({1}), platform::errors::InvalidArgument( "The shape of Tensor in list must be [1]. " "But received its shape " "is [%s]", tensor->dims())); if (tensor->type() == framework::proto::VarType::INT32) { if (!platform::is_cpu_place(tensor->place())) { framework::Tensor temp; TensorCopySync(*tensor, platform::CPUPlace(), &temp); vec_new_data.push_back(static_cast(*temp.data())); } else { vec_new_data.push_back(static_cast(*tensor->data())); } } else if (tensor->type() == framework::proto::VarType::INT64) { if (!platform::is_cpu_place(tensor->place())) { framework::Tensor temp; TensorCopySync(*tensor, platform::CPUPlace(), &temp); // NOTE: Converting int64 to int32 may cause data overflow. vec_new_data.push_back(static_cast(*temp.data())); } else { vec_new_data.push_back(static_cast(*tensor->data())); } } else { PADDLE_THROW(platform::errors::InvalidArgument( "The dtype of Tensor in list must be int32 or int64, but received: " "%s", tensor->type())); } } return vec_new_data; } inline framework::DDim GetShape(const framework::ExecutionContext& ctx) { // 1. shape is a Tensor if (ctx.HasInput("ShapeTensor")) { auto* shape_tensor = ctx.Input("ShapeTensor"); auto vec_shape = GetDataFromTensor(shape_tensor); return framework::make_ddim(vec_shape); } // 2. shape is a list/tuple containing Tensor auto shape_tensor_list = ctx.MultiInput("ShapeTensorList"); if (shape_tensor_list.size() > 0) { auto vec_shape = GetDataFromTensorList(shape_tensor_list); return framework::make_ddim(vec_shape); } // 3. shape is a list/tuple without containing Tensor auto vec_shape = ctx.Attr>("shape"); return framework::make_ddim(vec_shape); } template inline T GetValue(const framework::Tensor* x) { T value = static_cast(0); if (!platform::is_cpu_place(x->place())) { framework::Tensor cpu_x; framework::TensorCopy(*x, platform::CPUPlace(), &cpu_x); #ifdef PADDLE_WITH_ASCEND_CL platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); const platform::DeviceContext* dev_ctx = pool.Get(x->place()); dev_ctx->Wait(); #endif value = cpu_x.data()[0]; } else { value = x->data()[0]; } return value; } } // namespace operators } // namespace paddle