#!/usr/bin/env python3 # Copyright (c) 2022 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_mapper_test import OpMapperTest, logger import paddle class TestGaussianRandomOp(OpMapperTest): def init_input_data(self): self.feed_data = {} self.shape = [2, 3] self.mean = 0.0 self.std = 1.0 self.seed = 10 self.dtype = "float32" def set_op_type(self): return "gaussian_random" def set_op_inputs(self): return {} def set_op_attrs(self): return { "mean": self.mean, "std": self.std, "seed": self.seed, "shape": self.shape, "dtype": self.nptype2paddledtype(self.dtype), } def set_op_outputs(self): return {'Out': [self.dtype]} def test_check_results(self): # Due to the different random number generation numbers implemented # in the specific implementation, the random number results generated # by CINN and Paddle are not the same, but they all conform to the # Gaussian distribution. self.check_outputs_and_grads(max_relative_error=10000) class TestGaussianRandomCase1(TestGaussianRandomOp): def init_input_data(self): self.feed_data = {} self.shape = [2, 3, 4] self.mean = 1.0 self.std = 2.0 self.seed = 10 self.dtype = "float32" class TestGaussianRandomCase2(TestGaussianRandomOp): def init_input_data(self): self.feed_data = {} self.shape = [2, 3, 4] self.mean = 2.0 self.std = 3.0 self.seed = 10 self.dtype = "float64" if __name__ == "__main__": unittest.main()