# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import argparse import matplotlib.pyplot as plt def parse_args(): parser = argparse.ArgumentParser('Parse Log') parser.add_argument( '--file_path', '-f', type=str, help='the path of the log file') parser.add_argument( '--sample_rate', '-s', type=float, default=1.0, help='the rate to take samples from log') parser.add_argument( '--log_period', '-p', type=int, default=1, help='the period of log') args = parser.parse_args() return args def parse_file(file_name): loss = [] error = [] with open(file_name) as f: for i, line in enumerate(f): line = line.strip() if not line.startswith('pass'): continue line_split = line.split(' ') if len(line_split) != 5: continue loss_str = line_split[2][:-1] cur_loss = float(loss_str.split('=')[-1]) loss.append(cur_loss) err_str = line_split[3][:-1] cur_err = float(err_str.split('=')[-1]) error.append(cur_err) accuracy = [1.0 - err for err in error] return loss, accuracy def sample(metric, sample_rate): interval = int(1.0 / sample_rate) if interval > len(metric): return metric[:1] num = len(metric) / interval idx = [interval * i for i in range(num)] metric_sample = [metric[id] for id in idx] return metric_sample def plot_metric(metric, batch_id, graph_title, line_style='b-', line_label='y', line_num=1): plt.figure() plt.title(graph_title) if line_num == 1: plt.plot(batch_id, metric, line_style, label=line_label) else: for i in range(line_num): plt.plot(batch_id, metric[i], line_style[i], label=line_label[i]) plt.xlabel('batch') plt.ylabel(graph_title) plt.legend() plt.savefig(graph_title + '.jpg') plt.close() def main(): args = parse_args() assert args.sample_rate > 0. and args.sample_rate <= 1.0, "The sample rate should in the range (0, 1]." loss, accuracy = parse_file(args.file_path) batch = [args.log_period * i for i in range(len(loss))] batch_sample = sample(batch, args.sample_rate) loss_sample = sample(loss, args.sample_rate) accuracy_sample = sample(accuracy, args.sample_rate) plot_metric(loss_sample, batch_sample, 'loss', line_label='loss') plot_metric( accuracy_sample, batch_sample, 'accuracy', line_style='g-', line_label='accuracy') if __name__ == '__main__': main()