/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/platform/mkldnn_reuse.h" namespace paddle { namespace framework { class Tensor; } // namespace framework namespace platform { class MKLDNNDeviceContext; } // namespace platform } // namespace paddle namespace paddle { namespace operators { using framework::DataLayout; using framework::Tensor; using mkldnn::memory; using mkldnn::primitive; using mkldnn::stream; using platform::GetMKLDNNFormat; using platform::MKLDNNDeviceContext; using platform::to_void_cast; template class MKLDNNActivationKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const auto *x = ctx.Input("X"); PADDLE_ENFORCE_EQ( x->layout(), DataLayout::kMKLDNN, platform::errors::InvalidArgument("Wrong layout set for X tensor")); PADDLE_ENFORCE_NE( x->format(), MKLDNNMemoryFormat::undef, platform::errors::InvalidArgument("Wrong format set for X tensor")); Functor functor; functor(ctx); } }; template class MKLDNNActivationGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const auto *diff_y = ctx.Input(framework::GradVarName("Out")); PADDLE_ENFORCE_EQ(diff_y->layout(), DataLayout::kMKLDNN, platform::errors::InvalidArgument( "Wrong layout set for Input OutGrad tensor")); PADDLE_ENFORCE_NE(diff_y->format(), MKLDNNMemoryFormat::undef, platform::errors::InvalidArgument( "Wrong format set for Input OutGrad tensor")); Functor functor; functor(ctx); } }; template void eltwise_forward(const framework::ExecutionContext &ctx, mkldnn::algorithm algorithm) { PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true, paddle::platform::errors::PreconditionNotMet( "Operator DNNL eletwise_forward must use CPUPlace")); auto &dev_ctx = ctx.template device_context(); const auto *x = ctx.Input("X"); auto *y = ctx.Output("Out"); T alpha = ctx.HasAttr("alpha") ? ctx.Attr("alpha") : 0; T beta = ctx.HasAttr("beta") ? ctx.Attr("beta") : 0; // paddle uses beta but mkldnn uses alpha for swish if (algorithm == mkldnn::algorithm::eltwise_swish) { std::swap(alpha, beta); } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) { alpha = ctx.Attr("threshold"); } PADDLE_ENFORCE( x->dims().size() == 2 || x->dims().size() == 3 || x->dims().size() == 4, platform::errors::Unimplemented("Input dim must be with 2, 3 or 4")); auto src_tz = framework::vectorize(x->dims()); auto src_format = src_tz.size() == 2 ? MKLDNNMemoryFormat::nc : x->format(); platform::ActivationMKLDNNHandler handler( src_tz, algorithm, alpha, beta, src_format, dev_ctx, ctx.GetPlace(), ctx.InputName("X")); auto src_memory_p = handler.AcquireSrcMemory(x); auto dst_memory_p = x->IsSharedBufferWith(*y) ? src_memory_p : handler.AcquireDstMemory(y); auto activation_p = handler.AcquireForwardPrimitive(); mkldnn::stream astream(dev_ctx.GetEngine()); activation_p->execute(astream, {{MKLDNN_ARG_FROM, *src_memory_p}, {MKLDNN_ARG_TO, *dst_memory_p}}); astream.wait(); y->set_layout(DataLayout::kMKLDNN); y->set_format(GetMKLDNNFormat(*dst_memory_p)); } template void eltwise_grad(const framework::ExecutionContext &ctx, mkldnn::algorithm algorithm) { auto &dev_ctx = ctx.template device_context(); const auto *x = ctx.Input("X"); const auto *diff_y = ctx.Input(framework::GradVarName("Out")); auto *diff_x = ctx.Output(framework::GradVarName("X")); T alpha = ctx.HasAttr("alpha") ? ctx.Attr("alpha") : 0; T beta = ctx.HasAttr("beta") ? ctx.Attr("beta") : 0; // paddle uses beta but mkldnn uses alpha for swish if (algorithm == mkldnn::algorithm::eltwise_swish) { std::swap(alpha, beta); } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) { alpha = ctx.Attr("threshold"); } auto diff_dst_tz = framework::vectorize(diff_y->dims()); // diff_dst and src dims should be the same auto src_format = diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : x->format(); auto diff_y_format = diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : diff_y->format(); platform::ActivationMKLDNNHandler handler( diff_dst_tz, algorithm, alpha, beta, src_format, diff_y_format, dev_ctx, ctx.GetPlace(), ctx.InputName("X")); auto src_memory_p = handler.AcquireBackwardSrcMemory(x); auto diff_dst_memory_p = handler.AcquireDiffDstMemory(diff_y); auto diff_src_memory_p = handler.AcquireDiffSrcMemory(diff_x); auto activation_backward_p = handler.AcquireBackwardPrimitive(); mkldnn::stream astream(dev_ctx.GetEngine()); activation_backward_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p}, {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p}, {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}}); astream.wait(); diff_x->set_layout(DataLayout::kMKLDNN); diff_x->set_format(GetMKLDNNFormat(*diff_src_memory_p)); } template struct MKLDNNActivationFunc : public BaseActivationFunctor { void operator()(const framework::ExecutionContext &ctx) const { eltwise_forward(ctx, algorithm); } }; template struct MKLDNNActivationGradFunc : public BaseActivationFunctor { void operator()(const framework::ExecutionContext &ctx) const { eltwise_grad(ctx, algorithm); } }; template struct GeluMKLDNNFunctor : public BaseActivationFunctor { void operator()(const framework::ExecutionContext &ctx) const { const bool approximate = ctx.Attr("approximate"); if (approximate) { eltwise_forward(ctx, mkldnn::algorithm::eltwise_gelu_tanh); } else { eltwise_forward(ctx, mkldnn::algorithm::eltwise_gelu_erf); } } }; template struct GeluMKLDNNGradFunctor : public BaseActivationFunctor { void operator()(const framework::ExecutionContext &ctx) const { const bool approximate = ctx.Attr("approximate"); if (approximate) { eltwise_grad(ctx, mkldnn::algorithm::eltwise_gelu_tanh); } else { eltwise_grad(ctx, mkldnn::algorithm::eltwise_gelu_erf); } } }; template using ReluMKLDNNFunctor = MKLDNNActivationFunc; template using Relu6MKLDNNFunctor = MKLDNNActivationFunc; template using SwishMKLDNNFunctor = MKLDNNActivationFunc; template using SigmoidMKLDNNFunctor = MKLDNNActivationFunc; template using TanhMKLDNNFunctor = MKLDNNActivationFunc; template using SqrtMKLDNNFunctor = MKLDNNActivationFunc; template using AbsMKLDNNFunctor = MKLDNNActivationFunc; template using ReluMKLDNNGradFunctor = MKLDNNActivationGradFunc; template using Relu6MKLDNNGradFunctor = MKLDNNActivationGradFunc; template using SwishMKLDNNGradFunctor = MKLDNNActivationGradFunc; template using SigmoidMKLDNNGradFunctor = MKLDNNActivationGradFunc; template using TanhMKLDNNGradFunctor = MKLDNNActivationGradFunc; template using SqrtMKLDNNGradFunctor = MKLDNNActivationGradFunc; template using AbsMKLDNNGradFunctor = MKLDNNActivationGradFunc; } // namespace operators } // namespace paddle namespace ops = paddle::operators; #define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \ REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace, \ ops::MKLDNNActivationKernel>); \ REGISTER_OP_KERNEL( \ act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace, \ ops::MKLDNNActivationGradKernel>); #define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro) \ __macro(relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor); \ __macro(relu6, Relu6MKLDNNFunctor, Relu6MKLDNNGradFunctor); \ __macro(leaky_relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor); \ __macro(gelu, GeluMKLDNNFunctor, GeluMKLDNNGradFunctor); \ __macro(swish, SwishMKLDNNFunctor, SwishMKLDNNGradFunctor); \ __macro(sigmoid, SigmoidMKLDNNFunctor, SigmoidMKLDNNGradFunctor); \ __macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor); \ __macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor); \ __macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor); FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);