/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/math/concat_and_split.h" /** * case 1: * inputs: * t_a.shape: [2, 3, 4] * t_b.shape: [3, 3, 4] * output: * out.shape: [5, 3, 4] */ template void ConcatCase1(DeviceContext* context) { paddle::framework::Tensor input_a_cpu; paddle::framework::Tensor input_b_cpu; paddle::framework::Tensor out_cpu; paddle::framework::Tensor input_a; paddle::framework::Tensor input_b; paddle::framework::Tensor out; auto dim_a = paddle::framework::make_ddim({2, 3, 4}); auto dim_b = paddle::framework::make_ddim({3, 3, 4}); auto dim_out = paddle::framework::make_ddim({5, 3, 4}); input_a.mutable_data(dim_a, Place()); input_b.mutable_data(dim_b, Place()); out.mutable_data(dim_out, Place()); if (paddle::platform::is_gpu_place(Place())) { input_a_cpu.mutable_data(dim_a, paddle::platform::CPUPlace()); input_b_cpu.mutable_data(dim_b, paddle::platform::CPUPlace()); out_cpu.mutable_data(dim_out, paddle::platform::CPUPlace()); } int* a_ptr = nullptr; int* b_ptr = nullptr; if (paddle::platform::is_gpu_place(Place())) { a_ptr = input_a_cpu.data(); b_ptr = input_b_cpu.data(); } else { a_ptr = input_a.data(); b_ptr = input_b.data(); } for (int i = 0; i < 2 * 3 * 4; ++i) { a_ptr[i] = i; } for (int i = 0; i < 3 * 3 * 4; ++i) { b_ptr[i] = i; } if (paddle::platform::is_gpu_place(Place())) { paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a); paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b); } std::vector input; input.push_back(input_a); input.push_back(input_b); paddle::operators::math::ConcatFunctor concat_functor; concat_functor(*context, input, 0, &out); // check the dim of input_a, input_b PADDLE_ENFORCE_EQ(input_a.dims(), dim_a, paddle::platform::errors::InvalidArgument( "The dims of Input tensor should be the same as the " "declared dims. Tensor dims: [%s], declared dims: [%s]", input_a.dims(), dim_a)); PADDLE_ENFORCE_EQ(input_b.dims(), dim_b, paddle::platform::errors::InvalidArgument( "The dims of Input tensor should be the same as the " "declared dims. Tensor dims: [%s], declared dims: [%s]", input_b.dims(), dim_b)); int* out_ptr = nullptr; if (paddle::platform::is_gpu_place(Place())) { paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(), &out_cpu); out_ptr = out_cpu.data(); } else { out_ptr = out.data(); } int cols = 2 * 3 * 4; int idx_a = 0, idx_b = 0; for (int j = 0; j < 5 * 3 * 4; ++j) { if (j >= cols) { PADDLE_ENFORCE_EQ(out_ptr[j], b_ptr[idx_b], paddle::platform::errors::InvalidArgument( "Concat test failed, the result should be equal.")); ++idx_b; } else { PADDLE_ENFORCE_EQ(out_ptr[j], a_ptr[idx_a], paddle::platform::errors::InvalidArgument( "Concat test failed, the result should be equal.")); ++idx_a; } } } /** * case 2: * inputs: * t_a.shape: [2, 3, 4] * t_b.shape: [2, 4, 4] * output: * out.shape: [2, 7, 4] */ template void ConcatCase2(DeviceContext* context) { paddle::framework::Tensor input_a_cpu; paddle::framework::Tensor input_b_cpu; paddle::framework::Tensor out_cpu; paddle::framework::Tensor input_a; paddle::framework::Tensor input_b; paddle::framework::Tensor out; auto dim_a = paddle::framework::make_ddim({2, 3, 4}); auto dim_b = paddle::framework::make_ddim({2, 4, 4}); auto dim_out = paddle::framework::make_ddim({2, 7, 4}); input_a.mutable_data(dim_a, Place()); input_b.mutable_data(dim_b, Place()); out.mutable_data(dim_out, Place()); if (paddle::platform::is_gpu_place(Place())) { input_a_cpu.mutable_data(dim_a, paddle::platform::CPUPlace()); input_b_cpu.mutable_data(dim_b, paddle::platform::CPUPlace()); out_cpu.mutable_data(dim_out, paddle::platform::CPUPlace()); } int* a_ptr = nullptr; int* b_ptr = nullptr; if (paddle::platform::is_gpu_place(Place())) { a_ptr = input_a_cpu.data(); b_ptr = input_b_cpu.data(); } else { a_ptr = input_a.data(); b_ptr = input_b.data(); } for (int i = 0; i < 2 * 3 * 4; ++i) { a_ptr[i] = i; } for (int i = 0; i < 2 * 4 * 4; ++i) { b_ptr[i] = i; } if (paddle::platform::is_gpu_place(Place())) { paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a); paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b); } std::vector input; input.push_back(input_a); input.push_back(input_b); paddle::operators::math::ConcatFunctor concat_functor; concat_functor(*context, input, 1, &out); // check the dim of input_a, input_b PADDLE_ENFORCE_EQ(input_a.dims(), dim_a, paddle::platform::errors::InvalidArgument( "The dims of Input tensor should be the same as the " "declared dims. Tensor dims: [%s], declared dims: [%s]", input_a.dims(), dim_a)); PADDLE_ENFORCE_EQ(input_b.dims(), dim_b, paddle::platform::errors::InvalidArgument( "The dims of Input tensor should be the same as the " "declared dims. Tensor dims: [%s], declared dims: [%s]", input_b.dims(), dim_b)); int* out_ptr = nullptr; if (paddle::platform::is_gpu_place(Place())) { paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(), &out_cpu); out_ptr = out_cpu.data(); } else { out_ptr = out.data(); } int cols = 3 * 4; int idx_a = 0, idx_b = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 28; ++j) { if (j >= cols) { PADDLE_ENFORCE_EQ( out_ptr[i * 28 + j], b_ptr[idx_b], paddle::platform::errors::InvalidArgument( "Concat test failed, the result should be equal.")); ++idx_b; } else { PADDLE_ENFORCE_EQ( out_ptr[i * 28 + j], a_ptr[idx_a], paddle::platform::errors::InvalidArgument( "Concat test failed, the result should be equal.")); ++idx_a; } } } } /** * case 3: * inputs: * t_a.shape: [2, 3, 5] * t_b.shape: [2, 3, 4] * output: * out.shape: [2, 3, 9] */ template void ConcatCase3(DeviceContext* context) { paddle::framework::Tensor input_a_cpu; paddle::framework::Tensor input_b_cpu; paddle::framework::Tensor out_cpu; paddle::framework::Tensor input_a; paddle::framework::Tensor input_b; paddle::framework::Tensor out; auto dim_a = paddle::framework::make_ddim({2, 3, 4}); auto dim_b = paddle::framework::make_ddim({2, 3, 5}); auto dim_out = paddle::framework::make_ddim({2, 3, 9}); input_a.mutable_data(dim_a, Place()); input_b.mutable_data(dim_b, Place()); out.mutable_data(dim_out, Place()); if (paddle::platform::is_gpu_place(Place())) { input_a_cpu.mutable_data(dim_a, paddle::platform::CPUPlace()); input_b_cpu.mutable_data(dim_b, paddle::platform::CPUPlace()); out_cpu.mutable_data(dim_out, paddle::platform::CPUPlace()); } int* a_ptr = nullptr; int* b_ptr = nullptr; if (paddle::platform::is_gpu_place(Place())) { a_ptr = input_a_cpu.data(); b_ptr = input_b_cpu.data(); } else { a_ptr = input_a.data(); b_ptr = input_b.data(); } for (int i = 0; i < 2 * 3 * 4; ++i) { a_ptr[i] = i; } for (int i = 0; i < 2 * 3 * 5; ++i) { b_ptr[i] = i; } if (paddle::platform::is_gpu_place(Place())) { paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a); paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b); } std::vector input; input.push_back(input_a); input.push_back(input_b); paddle::operators::math::ConcatFunctor concat_functor; concat_functor(*context, input, 2, &out); // check the dim of input_a, input_b PADDLE_ENFORCE_EQ(input_a.dims(), dim_a, paddle::platform::errors::InvalidArgument( "The dims of Input tensor should be the same as the " "declared dims. Tensor dims: [%s], declared dims: [%s]", input_a.dims(), dim_a)); PADDLE_ENFORCE_EQ(input_b.dims(), dim_b, paddle::platform::errors::InvalidArgument( "The dims of Input tensor should be the same as the " "declared dims. Tensor dims: [%s], declared dims: [%s]", input_b.dims(), dim_b)); int* out_ptr = nullptr; if (paddle::platform::is_gpu_place(Place())) { paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(), &out_cpu); out_ptr = out_cpu.data(); } else { out_ptr = out.data(); } // check the data int cols = 4; int idx_a = 0, idx_b = 0; for (int i = 0; i < 6; ++i) { for (int j = 0; j < 9; ++j) { if (j >= cols) { PADDLE_ENFORCE_EQ( out_ptr[i * 9 + j], b_ptr[idx_b], paddle::platform::errors::InvalidArgument( "Concat test failed, the result should be equal.")); ++idx_b; } else { PADDLE_ENFORCE_EQ( out_ptr[i * 9 + j], a_ptr[idx_a], paddle::platform::errors::InvalidArgument( "Concat test failed, the result should be equal.")); ++idx_a; } } } } /** * case 4: * inputs: * axis = 1 * t_a.shape: [2, 3, 4] * t_b.shape: [2, 3, 4] * output: * out.shape: [2, 6, 4] */ template void ConcatCase4(DeviceContext* context) { paddle::framework::Tensor input_a_cpu; paddle::framework::Tensor input_b_cpu; paddle::framework::Tensor out_cpu; paddle::framework::Tensor input_a; paddle::framework::Tensor input_b; paddle::framework::Tensor out; auto dim_a = paddle::framework::make_ddim({2, 3, 4}); auto dim_b = paddle::framework::make_ddim({2, 3, 4}); auto dim_out = paddle::framework::make_ddim({2, 6, 4}); input_a.mutable_data(dim_a, Place()); input_b.mutable_data(dim_b, Place()); out.mutable_data(dim_out, Place()); if (paddle::platform::is_gpu_place(Place())) { input_a_cpu.mutable_data(dim_a, paddle::platform::CPUPlace()); input_b_cpu.mutable_data(dim_b, paddle::platform::CPUPlace()); out_cpu.mutable_data(dim_out, paddle::platform::CPUPlace()); } int* a_ptr = nullptr; int* b_ptr = nullptr; if (paddle::platform::is_gpu_place(Place())) { a_ptr = input_a_cpu.data(); b_ptr = input_b_cpu.data(); } else { a_ptr = input_a.data(); b_ptr = input_b.data(); } for (int i = 0; i < 2 * 3 * 4; ++i) { a_ptr[i] = i; } for (int i = 0; i < 2 * 3 * 4; ++i) { b_ptr[i] = i; } if (paddle::platform::is_gpu_place(Place())) { paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a); paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b); } std::vector input; input.push_back(input_a); input.push_back(input_b); paddle::operators::math::ConcatFunctor concat_functor; concat_functor(*context, input, 1, &out); context->Wait(); // check the dim of input_a, input_b PADDLE_ENFORCE_EQ(input_a.dims(), dim_a, paddle::platform::errors::InvalidArgument( "The dims of Input tensor should be the same as the " "declared dims. Tensor dims: [%s], declared dims: [%s]", input_a.dims(), dim_a)); PADDLE_ENFORCE_EQ(input_b.dims(), dim_b, paddle::platform::errors::InvalidArgument( "The dims of Input tensor should be the same as the " "declared dims. Tensor dims: [%s], declared dims: [%s]", input_b.dims(), dim_b)); int* out_ptr = nullptr; if (paddle::platform::is_gpu_place(Place())) { paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(), &out_cpu); out_ptr = out_cpu.data(); } else { out_ptr = out.data(); } // check the data int cols = 12; int idx_a = 0, idx_b = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 24; ++j) { if (j >= cols) { PADDLE_ENFORCE_EQ( out_ptr[i * 24 + j], b_ptr[idx_b], paddle::platform::errors::InvalidArgument( "Concat test failed, the result should be equal.")); ++idx_b; } else { PADDLE_ENFORCE_EQ( out_ptr[i * 24 + j], a_ptr[idx_a], paddle::platform::errors::InvalidArgument( "Concat test failed, the result should be equal.")); ++idx_a; } } } } template void TestConcatMain() { DeviceContext* context = new DeviceContext(Place()); ConcatCase1(context); ConcatCase2(context); ConcatCase3(context); ConcatCase4(context); } TEST(math, concat) { TestConcatMain(); #ifdef PADDLE_WITH_CUDA TestConcatMain(); #endif }