// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include "paddle/fluid/eager/eager_tensor.h" #include "paddle/fluid/eager/hooks.h" #include "paddle/phi/api/all.h" namespace egr { /** * GradNodeBase is base class of all grad node, which is what should be used by * eager execution, we define most of backward autograd members here, and for * each Operator, they should hold their onw forward Inputs as TensorWrapper. * * The GradNodeBase will be held in autograd_meta, and it is also a member of * Edge, which indicates the edge of backward graph. * * TODO:(yangzhanlue) GradNodeBase will also in charge of get the correct input * from GradOpDescMaker to GradNodeBase. * * NOTE:GradNodeBase has a method named run, this method should be overrided by * the * specific derived class, it will prepare backward inputs and double backward's * depends. Then, it will call C++ API of backward kernel functions to finish * backward computation. * * NOTE:GradNodeBase holds its own inputs and Outputs * * Edge is defined to descripe depend of backward, an Edge is what linked * between two * node, it should contain a Node and rank of this Node (this is used to * indicate which * input of grad this edge belong). * */ class Edge; class AutogradMeta; /** * GradSlotMeta is used to Record Forward Tensor info to backward, since paddle * has lots of operators * whose backward logic is depends on if it has some specific inputs or outputs. * So, we need a meta info * to record it's needs. * **/ class GradSlotMeta { public: GradSlotMeta() = default; bool IsStopGradient() const { return stop_gradient_; } void SetStopGradient(bool stop_gradient = true) { stop_gradient_ = stop_gradient; } void SetTensorMeta(const phi::DenseTensorMeta& meta) { meta_ = std::make_shared(meta); } bool HasTensorMeta() const { return meta_ && meta_.get(); } const phi::DenseTensorMeta& GetTensorMeta() const { if (!HasTensorMeta()) { PADDLE_THROW(paddle::platform::errors::Fatal( "meta_ of GradSlotMeta has not been initialized yet." "You're expected to check Edge availability with HasTensorMeta()" "before calling GetTensorMeta() interface.")); } return *meta_.get(); } void SetPlace(const phi::Place& place) { place_ = place; } const phi::Place& GetPlace() const { return place_; } private: bool stop_gradient_{false}; phi::Place place_; std::shared_ptr meta_ = nullptr; }; class GradNodeBase : public std::enable_shared_from_this { public: GradNodeBase() { VLOG(6) << "Construct GradNodeBase"; } GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num); // TODO(jiabin): Should we have other constructor here? virtual ~GradNodeBase() { VLOG(6) << "Destruct GradNodeBase"; } /** * operator() designed to contian the real backward execution logic, it should * be * overrided by derived class defined for each operator. It accepts a vector * of * Tensor which contains grads input of current operator * * Note: why we need backward inputs and outputs construct as vector of vector * of paddle::experimental::Tensor? * Since all of paddle op composite in form of {"Slot name ", vector}, * so, vector of vector * is better choice to fit this format. * **/ virtual std::vector> operator()( std::vector>& grads, // NOLINT bool create_graph = false) = 0; virtual void ClearTensorWrappers() = 0; /** * Self-Copy interface designed for use in DoubleGrad * **/ virtual std::shared_ptr Copy() const = 0; /** * AddEdges is designed to set input tensors' backward Node as current * node's Edges. * This method should be call in forward code and for double backward depends * computation. * * This one is called slot by slot * **/ void AddEdges(std::vector* metas, size_t slot_id); void AddEdges(AutogradMeta* meta, size_t slot_id); // adj_edges were moved inside OutputMeta(), so no available direct access // from GradNodeBase. // To access Edges, get GradSlotMeta by calling OutputMeta(), then use // slot_meta.GetEdge() /** * Get Input Meta of current Grad node**/ const std::vector>& InputMeta() const; /** * Get Output Meta of current Grad node**/ const std::vector>& OutputMeta() const; /** * Set bwd ins and outs info with forward vars * **/ void SetGradInMeta(const std::vector& fwd_out, size_t slot_rank); void SetGradInMeta(const paddle::experimental::Tensor& fwd_out, size_t slot_rank); void SetGradOutMeta(const std::vector& fwd_in, size_t slot_rank); void SetGradOutMeta(const paddle::experimental::Tensor& fwd_in, size_t slot_rank); /** * Default setters for Grad in/out meta this should be used for same special * Node which will not create by user * **/ void SetDefaultGradInOutMeta(); /** * Register GradientHook * **/ int64_t RegisterGradientHook(size_t slot_id, size_t rank, std::shared_ptr&& hook); /** * Remove GradientHook * **/ bool RemoveGradientHook(const int64_t& hook_id) { auto remove_cnt = gradient_hooks_.erase(hook_id); if (remove_cnt == 0) { return false; } return true; } /** * Apply GradientHook * **/ inline bool GradientHooksRegistered() { return !gradient_hooks_.empty(); } std::vector> ApplyGradientHooks( const std::vector>& tensors); /** * Handle Complex - Real Type Promotion * **/ void HandleComplexGradToRealGrad( std::vector>* out_grads); bool NeedComplexToRealConversion() { return need_complex_to_real_; } virtual std::string name() { return "GradNodeBase"; } /** * GetEdges is designed to get all edges of current node**/ const std::vector>& GetEdges() const; std::vector>& GetMutableEdges(); /** * The following interfaces are designed for no_need_buffer * **/ bool IsTensorWrappersCleared() { return is_tensor_wrappers_cleared_; } void SetIsTensorWrappersCleared(bool is_tensor_wrappers_cleared) { is_tensor_wrappers_cleared_ = is_tensor_wrappers_cleared; } private: // TODO(zhanlve): Merge adj_edges_ into GradOutMeta // Edges recorded the backward related node info, which indicate all edges // linked // by this Grad Node. // Why we need vector>: Edges is as same rank as bwd output. std::vector> adj_edges_; // bwd_out_meta_ is used to record Grad output info for backward std::vector> bwd_out_meta_; // bwd_in_meta_ used to record Grad input info for backward std::vector> bwd_in_meta_; // Gradient Hooks // Customer may register a list of hooks which will be called in order during // backward // Each entry consists one pair of // >> std::map>> gradient_hooks_; // We handle complex to real conversion only if any complex GradIn is involved bool need_complex_to_real_ = false; int64_t next_hook_id_{0}; bool is_tensor_wrappers_cleared_ = false; }; class Edge { public: // Default constructor for Edges in order to construct it for AutogradMeta Edge() : in_slot_id_(0), in_rank_(0), grad_node_(nullptr) {} // In real use cases we should create Edge from grad node and input rank which // indicate which edge it is. // Since we have slot design in operators we will have to locate an edge with // slot // and rank. Edge(const std::shared_ptr& grad_node, size_t in_slot_id, size_t in_rank) : in_slot_id_(in_slot_id), in_rank_(in_rank), grad_node_(grad_node) {} Edge(const std::shared_ptr& grad_node, const std::pair& rank_info) : in_slot_id_(rank_info.first), in_rank_(rank_info.second), grad_node_(grad_node) {} GradNodeBase* GetGradNode() const { return grad_node_.get(); } std::shared_ptr GetMutableGradNode() const { return grad_node_; } void SetGradNode(const std::shared_ptr& node) { VLOG(6) << "Reseting Edge's Grad Node"; grad_node_ = node; } std::pair GetEdgeRankInfo() const { return std::make_pair(in_slot_id_, in_rank_); } void SetEdgeRankInfo(size_t slot_id, size_t in_rank) { in_slot_id_ = slot_id; in_rank_ = in_rank; } void SetEdgeRankInfo( const std::pair& edge_rank) { in_slot_id_ = edge_rank.first; in_rank_ = edge_rank.second; } // Currently we use grad_node_ to identify if a edge is initialized. bool IsInitialized() const { if (!grad_node_) { return false; } else { if (!(grad_node_.get())) { return false; } else { return true; } } } private: size_t in_slot_id_; size_t in_rank_; std::shared_ptr grad_node_{nullptr}; }; inline void CheckTensor(const paddle::experimental::Tensor& pre, const paddle::experimental::Tensor& post) { if (!pre.initialized() && post.initialized()) { PADDLE_THROW(paddle::platform::errors::PermissionDenied( "The tensor in before and after hook are not consistent")); } if (pre.initialized() && post.initialized()) { VLOG(4) << paddle::framework::DataType2String(pre.dtype()) << " " << paddle::framework::DataType2String(post.dtype()); PADDLE_ENFORCE_EQ( pre.dtype(), post.dtype(), paddle::platform::errors::PermissionDenied( "The dtype of tensor before(%s) and after(%s) hook are not " "consistent", paddle::framework::DataType2String(pre.dtype()), paddle::framework::DataType2String(post.dtype()))); PADDLE_ENFORCE_EQ( pre.place(), post.place(), paddle::platform::errors::PermissionDenied( "The place of tensor before(%s) and after(%s) " "hook are not consistent", pre.place().DebugString(), post.place().DebugString())); } } } // namespace egr