// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/analysis/passes/ir_analysis_pass.h" #include #include #include "paddle/fluid/framework/ir/fuse_pass_base.h" #include "paddle/fluid/inference/analysis/ir_pass_manager.h" #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/framework/ir/mkldnn/mkldnn_pass_util.h" #endif namespace paddle { namespace inference { namespace analysis { void IrAnalysisPass::RunImpl(Argument* argument) { ARGUMENT_CHECK_FIELD(argument, ir_analysis_passes); ARGUMENT_CHECK_FIELD(argument, main_program); ARGUMENT_CHECK_FIELD(argument, scope); auto* the_graph = argument->ReleaseMainGraph(); auto graph = std::unique_ptr(the_graph); #ifdef PADDLE_WITH_MKLDNN if (argument->Has("calibration_file_path")) { VLOG(5) << "Calibration file path of quantize model: " << argument->calibration_file_path(); std::unordered_map> var_quant_scales{}; ReadCalibrationInfo(argument, &var_quant_scales); // save var_quant_scales in the first op's attr // for quant_dequant_mkldnn_pass SaveInfoInTheFirstOp( the_graph, "has_quant_info", "var_quant_scales", var_quant_scales); } #endif // Apply passes. IRPassManager the_ir_manager(argument); graph = the_ir_manager.Apply(std::move(graph)); PADDLE_ENFORCE_GT( graph->Nodes().size(), 0, platform::errors::PreconditionNotMet( "The graph nodes size should be greater than 0, but got 0")); argument->SetMainGraph(graph.release()); CollectFusionStatis(argument); } void IrAnalysisPass::ReadCalibrationInfo( Argument* argument, std::unordered_map>* var_quant_scales) { std::string calibration_file_path; #ifdef PADDLE_WITH_MKLDNN if (argument->Has("calibration_file_path")) { calibration_file_path = argument->calibration_file_path(); } #endif if (calibration_file_path.empty()) { LOG(INFO) << "argument has no calibration_file_path"; return; } std::ifstream calibration_file(calibration_file_path); std::string one_line; while (getline(calibration_file, one_line)) { if (one_line.find(" ") != one_line.npos) { auto pos = one_line.find(" "); std::string pre_str = one_line.substr(0, pos); std::string pos_str = one_line.substr(pos); if (pre_str.size() && pos_str.size()) { std::string tensor_name = pre_str; float scale = std::stod(pos_str); scale = 1.0 / scale; if (std::isinf(scale) || std::isnan(scale)) { continue; } std::vector scales = {scale}; (*var_quant_scales)[tensor_name] = scales; } } } } void IrAnalysisPass::CollectFusionStatis(Argument* argument) { if (!argument->main_graph().Has(framework::ir::kFuseStatisAttr)) { LOG(INFO) << "argument has no fuse statis"; return; } argument->SetFusionStatis( argument->main_graph().Get( framework::ir::kFuseStatisAttr)); } std::string IrAnalysisPass::repr() const { return "ir_analysis_pass"; } } // namespace analysis } // namespace inference } // namespace paddle