/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // disable numpy compile error #include // Avoid a problem with copysign defined in pyconfig.h on Windows. #ifdef copysign #undef copysign #endif #include #include #include "paddle/fluid/eager/accumulation/accumulation_node.h" #include "paddle/fluid/eager/api/all.h" #include "paddle/fluid/eager/autograd_meta.h" #include "paddle/fluid/eager/utils.h" #include "paddle/fluid/imperative/op_base.h" #include "paddle/fluid/memory/allocation/allocator.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/pybind/eager.h" #include "paddle/fluid/pybind/eager_utils.h" #include "paddle/fluid/pybind/exception.h" #include "paddle/phi/common/data_type.h" #include "paddle/phi/core/compat/convert_utils.h" #include "paddle/phi/core/dense_tensor.h" #pragma GCC diagnostic ignored "-Wwrite-strings" namespace paddle { namespace pybind { extern PyTypeObject* p_tensor_type; PyObject* tensor_properties_get_name(TensorObject* self, void* closure) { EAGER_TRY // NOTE(dev): [why not use egr::Controller::Instance::GenerateUniqueName()?] // Because Controller must holder a tracer, but 'tensor.name' maybe called // everywhere such as static graph mode in @to_static, which means tracer is // None. static egr::UniqueNameGenerator name_generator; if (self->tensor.name().empty()) { self->tensor.set_name(name_generator.Generate()); } return ToPyObject(self->tensor.name()); EAGER_CATCH_AND_THROW_RETURN_NULL } PyObject* tensor_properties_get_type(TensorObject* self, void* closure) { EAGER_TRY if (!self->tensor.defined()) { // be same to old dygraph return ToPyObject(paddle::framework::proto::VarType::LOD_TENSOR); } if (self->tensor.is_dense_tensor()) { return ToPyObject(paddle::framework::proto::VarType::LOD_TENSOR); } else if (self->tensor.is_selected_rows()) { return ToPyObject(paddle::framework::proto::VarType::SELECTED_ROWS); } else if (egr::IsVariableCompatTensor(self->tensor)) { return ToPyObject(static_cast( static_cast(self->tensor.impl().get()) ->Type())); } else { RETURN_PY_NONE } EAGER_CATCH_AND_THROW_RETURN_NULL } PyObject* tensor_properties_is_leaf(TensorObject* self, void* closure) { EAGER_TRY return ToPyObject(egr::EagerUtils::IsLeafTensor(self->tensor)); EAGER_CATCH_AND_THROW_RETURN_NULL } int tensor_properties_set_name(TensorObject* self, PyObject* value, void* closure) { EAGER_TRY self->tensor.set_name(CastPyArg2AttrString(value, 0)); return 0; EAGER_CATCH_AND_THROW_RETURN_NEG } PyObject* tensor_properties_get_stop_gradient(TensorObject* self, void* closure) { EAGER_TRY auto meta = egr::EagerUtils::autograd_meta(&self->tensor); return ToPyObject(meta->StopGradient()); EAGER_CATCH_AND_THROW_RETURN_NULL } PyObject* tensor_properties_get_grad(TensorObject* self, void* closure) { EAGER_TRY VLOG(6) << "Get grad for tensor: " << self->tensor.name(); auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor); VLOG(6) << meta << " initialized: " << meta->Grad().initialized(); if (meta && meta->Grad().initialized()) { return ToPyObject(meta->Grad()); } else { RETURN_PY_NONE } EAGER_CATCH_AND_THROW_RETURN_NULL } int tensor_properties_set_grad(TensorObject* self, PyObject* value, void* closure) { EAGER_TRY auto src = CastPyArg2Tensor(value, 0); PADDLE_ENFORCE( egr::EagerUtils::IsLeafTensor(self->tensor), paddle::platform::errors::Fatal("Only leaf Tensor can be set grad.")); paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor); PADDLE_ENFORCE(grad != nullptr, paddle::platform::errors::Fatal( "Detected NULL grad" "Please check if you have manually cleared" "the grad inside autograd_meta")); grad->copy_(src, self->tensor.place(), true); return 0; EAGER_CATCH_AND_THROW_RETURN_NEG } int tensor_properties_set_stop_gradient(TensorObject* self, PyObject* value, void* closure) { EAGER_TRY auto meta = egr::EagerUtils::autograd_meta(&self->tensor); meta->SetStopGradient(CastPyArg2AttrBoolean(value, 0)); if (!meta->GradNode()) { meta->SetGradNode(std::make_shared(meta)); } return 0; EAGER_CATCH_AND_THROW_RETURN_NEG } PyObject* tensor_properties_get_persistable(TensorObject* self, void* closure) { EAGER_TRY auto meta = egr::EagerUtils::autograd_meta(&self->tensor); return ToPyObject(meta->Persistable()); EAGER_CATCH_AND_THROW_RETURN_NULL } int tensor_properties_set_persistable(TensorObject* self, PyObject* value, void* closure) { EAGER_TRY auto meta = egr::EagerUtils::autograd_meta(&self->tensor); meta->SetPersistable(CastPyArg2AttrBoolean(value, 0)); return 0; EAGER_CATCH_AND_THROW_RETURN_NEG } PyObject* tensor_properties_get_dist_attr(TensorObject* self, void* closure) { EAGER_TRY if (self->tensor.is_dist_tensor()) { #ifdef PADDLE_WITH_DISTRIBUTE phi::distributed::DistTensor* dist_tensor = static_cast(self->tensor.impl().get()); return ToPyObject(dist_tensor->dist_attr().get()); #else RETURN_PY_NONE #endif } else { RETURN_PY_NONE } EAGER_CATCH_AND_THROW_RETURN_NULL } PyObject* tensor_properties_get_shape(TensorObject* self, void* closure) { EAGER_TRY std::vector value; if (!self->tensor.defined()) { return ToPyObject(value); } if (egr::IsVariableCompatTensor(self->tensor)) { auto* var_tensor = static_cast( self->tensor.impl().get()); if (var_tensor->IsType()) { value.emplace_back(static_cast( var_tensor->Get().size())); } else if (var_tensor->IsType()) { value.emplace_back(static_cast( var_tensor->Get().size())); } else { PADDLE_THROW(paddle::platform::errors::Unavailable( "VariableCompatTensor only support get shape from Vocab or " "Strings.")); } } else { auto ddim = self->tensor.shape(); size_t rank = static_cast(ddim.size()); value.resize(rank); for (size_t i = 0; i < rank; i++) { value[i] = ddim[i]; } } if (!egr::IsVariableCompatTensor(self->tensor)) { auto desired_layout = paddle::imperative::LayoutAutoTune::Instance().GetDesiredLayout(); auto default_layout = paddle::imperative::LayoutAutoTune::Instance().GetDefaultLayout(); bool change_dim = (desired_layout != default_layout && self->tensor.layout() == desired_layout && value.size() == 4); VLOG(6) << "eager_properties 'Shape' method, layout autotune " << " desired_layout: " << desired_layout << " default_layout: " << default_layout << " tensor layout: " << self->tensor.layout() << " tensor's shape size is : " << value.size(); std::vector dims = value; if (change_dim && phi::DataLayoutToString(desired_layout) == "NCHW") { // NCHW -> NHWC VLOG(6) << "layout autotune get Shape from NCHW -> NHWC " << value[0] << " " << value[1] << " " << value[2] << " " << value[3] << " to " << dims[0] << " " << dims[2] << " " << dims[3] << " " << dims[1]; value[0] = dims[0]; value[1] = dims[2]; value[2] = dims[3]; value[3] = dims[1]; } else if (change_dim && phi::DataLayoutToString(desired_layout) == "NHWC") { // NHWC -> NCHW VLOG(6) << "layout autotune get Shape from NHWC -> NCHW " << value[0] << " " << value[1] << " " << value[2] << " " << value[3] << " to " << dims[0] << " " << dims[3] << " " << dims[1] << " " << dims[2] << " " << dims[1]; value[0] = dims[0]; value[1] = dims[3]; value[2] = dims[1]; value[3] = dims[2]; } } return ToPyObject(value); EAGER_CATCH_AND_THROW_RETURN_NULL } PyObject* tensor_properties_get_layout(TensorObject* self, void* closure) { EAGER_TRY std::string layout = ""; if (!self->tensor.defined()) { return ToPyObject(layout); } if (egr::IsVariableCompatTensor(self->tensor)) { VLOG(3) << "VariableCompatTensor does not support `layout` method."; return ToPyObject(layout); } else { return ToPyObject(phi::DataLayoutToString(self->tensor.layout())); } return ToPyObject(layout); EAGER_CATCH_AND_THROW_RETURN_NULL } PyObject* tensor_properties_get_place(TensorObject* self, void* closure) { EAGER_TRY return ToPyObject(self->tensor.place()); EAGER_CATCH_AND_THROW_RETURN_NULL } PyObject* tensor_properties_get_place_str(TensorObject* self, void* closure) { EAGER_TRY std::stringstream ostr; ostr << self->tensor.place(); return ToPyObject(ostr.str()); EAGER_CATCH_AND_THROW_RETURN_NULL } PyObject* tensor_properties_get_dtype(TensorObject* self, void* closure) { EAGER_TRY if (!self->tensor.defined()) { // be same to old dygraph return ToPyObject(framework::proto::VarType::FP32); } if (egr::IsVariableCompatTensor(self->tensor)) { auto* var_tensor = static_cast( self->tensor.impl().get()); if (var_tensor->IsType()) { return ToPyObject(framework::proto::VarType::RAW); } else if (var_tensor->IsType()) { return ToPyObject(framework::proto::VarType::STRING); } else { PADDLE_THROW(paddle::platform::errors::Unavailable( "VariableCompatTensor only support get shape from Vocab or " "Strings.")); } } else { return ToPyObject( paddle::framework::TransToProtoVarType(self->tensor.type())); } EAGER_CATCH_AND_THROW_RETURN_NULL } PyObject* tensor_properties_get_grad_fn(TensorObject* self, void* closure) { EAGER_TRY if (!self->tensor.defined()) { // Handle undefined tensors if necessary; otherwise, return nullptr or an // appropriate PyObject. In this case, I will return Py_None. Py_INCREF(Py_None); return Py_None; } // Get GradNode from the tensor auto meta = egr::EagerUtils::nullable_autograd_meta( self->tensor); // If meta exists, get the GradNode if (meta) { // Get the GradNode from meta auto grad_node_ptr = meta->GetMutableGradNode(); if (!grad_node_ptr) { Py_INCREF(Py_None); return Py_None; } PyObject* py_grad_node = ToPyObject(grad_node_ptr); return py_grad_node; } else { // If meta does not exist, return an appropriate Python object (e.g., None // or a special value). Py_INCREF(Py_None); return Py_None; } EAGER_CATCH_AND_THROW_RETURN_NULL } struct PyGetSetDef variable_properties[] = { {"grad", (getter)tensor_properties_get_grad, (setter)tensor_properties_set_grad, nullptr, nullptr}, {"name", (getter)tensor_properties_get_name, (setter)tensor_properties_set_name, nullptr, nullptr}, {"stop_gradient", (getter)tensor_properties_get_stop_gradient, (setter)tensor_properties_set_stop_gradient, nullptr, nullptr}, {"persistable", (getter)tensor_properties_get_persistable, (setter)tensor_properties_set_persistable, nullptr, nullptr}, {"shape", (getter)tensor_properties_get_shape, nullptr, nullptr, nullptr}, {"layout", (getter)tensor_properties_get_layout, nullptr, nullptr, nullptr}, // {"is_leaf", (getter)tensor_properties_get_is_leaf, nullptr, // nullptr, // nullptr}, {"place", (getter)tensor_properties_get_place, nullptr, nullptr, nullptr}, {"dist_attr", (getter)tensor_properties_get_dist_attr, nullptr, nullptr, nullptr}, {"_place_str", (getter)tensor_properties_get_place_str, nullptr, nullptr, nullptr}, {"dtype", (getter)tensor_properties_get_dtype, nullptr, nullptr, nullptr}, {"type", (getter)tensor_properties_get_type, nullptr, nullptr, nullptr}, {"is_leaf", (getter)tensor_properties_is_leaf, nullptr, nullptr, nullptr}, {"grad_fn", (getter)tensor_properties_get_grad_fn, nullptr, nullptr, nullptr}, {nullptr, nullptr, nullptr, nullptr, nullptr}}; // variable_properties for core.eager.StringTensor struct PyGetSetDef string_tensor_variable_properties[] = { {"name", (getter)tensor_properties_get_name, (setter)tensor_properties_set_name, nullptr, nullptr}, {"shape", (getter)tensor_properties_get_shape, nullptr, nullptr, nullptr}, {"layout", (getter)tensor_properties_get_layout, nullptr, nullptr, nullptr}, {"place", (getter)tensor_properties_get_place, nullptr, nullptr, nullptr}, {"_place_str", (getter)tensor_properties_get_place_str, nullptr, nullptr, nullptr}, {nullptr, nullptr, nullptr, nullptr, nullptr}}; } // namespace pybind } // namespace paddle