# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle from paddle.fluid.framework import _test_eager_guard class TestSparseActivation(unittest.TestCase): def test_sparse_relu(self): with _test_eager_guard(): x = [[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]] def dense_relu(x): dense_x = paddle.to_tensor( x, dtype='float32', stop_gradient=False) dense_relu = paddle.nn.ReLU() dense_out = dense_relu(dense_x) dense_out.backward(dense_out) return dense_out, dense_x.grad dense_x = paddle.to_tensor(x, dtype='float32', stop_gradient=False) sparse_dim = 2 sparse_x = dense_x.to_sparse_coo(sparse_dim) sparse_relu = paddle.sparse.ReLU() sparse_out = sparse_relu(sparse_x) sparse_out.backward(sparse_out) dense_out, dense_x_grad = dense_relu(x) assert np.array_equal(dense_out.numpy(), sparse_out.to_dense().numpy()) assert np.array_equal(dense_x_grad.numpy(), sparse_x.grad.to_dense().numpy()) if __name__ == "__main__": unittest.main()