/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. Indicesou may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/op_registry.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace paddle { namespace operators { inline void GetDims(const framework::DDim& dim, int axis, int* pre, int* n, int* post, bool asvector) { *pre = 1; *post = 1; *n = dim[axis]; if (asvector) { *n = product(dim); } else { for (int i = 0; i < axis; ++i) { (*pre) *= dim[i]; } for (int i = axis + 1; i < dim.size(); ++i) { (*post) *= dim[i]; } } } template class PnormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* in_x = ctx.Input("X"); auto* out_norm = ctx.Output("Out"); out_norm->mutable_data(ctx.GetPlace()); auto xdim = in_x->dims(); float porder = ctx.Attr("porder"); int axis = ctx.Attr("axis"); bool asvector = ctx.Attr("asvector"); if (axis < 0) axis = xdim.size() + axis; int pre, n, post; GetDims(xdim, axis, &pre, &n, &post, asvector); auto* place = ctx.template device_context().eigen_device(); Eigen::DSizes shape(pre, n, post); Eigen::DSizes norm_shape(pre, post); auto x_e = framework::EigenVector::Flatten(*in_x); auto norm_e = framework::EigenVector::Flatten(*out_norm); auto x = x_e.reshape(shape); auto norm = norm_e.reshape(norm_shape); // p=0 means number of non-zero elements of (x) // p=inf means the maximum of |x| // p=-inf means the minimum of |x| // otherwise, Lp-norm = pow(sum(pow(|x|, p)), 1/p) Eigen::DSizes rdim(1); if (porder == 0) { norm.device(*place) = (x != x.constant(0)).template cast().sum(rdim); } else if (porder == INFINITY) { norm.device(*place) = x.abs().maximum(rdim); } else if (porder == -INFINITY) { norm.device(*place) = x.abs().minimum(rdim); } else { norm.device(*place) = x.abs().pow(porder).sum(rdim).pow(1.0f / porder); } } }; template class PnormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* in_x = ctx.Input("X"); auto* in_norm = ctx.Input("Out"); auto* in_norm_dy = ctx.Input(framework::GradVarName("Out")); auto* out_dx = ctx.Output(framework::GradVarName("X")); out_dx->mutable_data(ctx.GetPlace()); T eps = static_cast(ctx.Attr("epsilon")); auto xdim = in_x->dims(); float porder = ctx.Attr("porder"); int axis = ctx.Attr("axis"); bool asvector = ctx.Attr("asvector"); if (axis < 0) axis = xdim.size() + axis; int pre, n, post; GetDims(xdim, axis, &pre, &n, &post, asvector); Eigen::DSizes shape(pre, n, post); Eigen::DSizes rshape(pre, 1, post); auto* place = ctx.template device_context().eigen_device(); auto x_e = framework::EigenVector::Flatten(*in_x); auto dx_e = framework::EigenVector::Flatten(*out_dx); auto norm_e = framework::EigenVector::Flatten(*in_norm); auto norm_dy_e = framework::EigenVector::Flatten(*in_norm_dy); auto x = x_e.reshape(shape); auto dx = dx_e.reshape(shape); auto norm = norm_e.reshape(rshape); auto norm_dy = norm_dy_e.reshape(rshape); Eigen::DSizes rdim(1); Eigen::DSizes bcast(1, n, 1); if (porder == 0) { phi::funcs::SetConstant set_zero; auto& dev_ctx = ctx.template device_context(); set_zero(dev_ctx, out_dx, static_cast(0)); } else if (porder == INFINITY || porder == -INFINITY) { dx.device(*place) = (x.abs() == norm.broadcast(bcast)).template cast() * x.sign() * norm_dy.broadcast(bcast); } else { dx.device(*place) = (x.abs()).pow(porder - 1.0f) / ((norm.broadcast(bcast)).pow(porder - 1.0f) + x.constant(eps)); dx.device(*place) = dx * norm_dy.broadcast(bcast) * x.sign(); } } }; } // namespace operators } // namespace paddle