# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.nn import functional as F from paddle.incubate.nn import functional as incubate_f from paddle.nn import Layer from paddle.framework import ParamAttr import paddle from paddle.nn.layer.transformer import _convert_attention_mask, _convert_param_attr_to_list from paddle.nn.initializer import Constant import collections # for distributed tensor model parallel def _set_var_distributed(var): if var is None: return var.is_distributed = True # NOTE: use current_block and find_var_recursive to support while_loop startup_block = paddle.static.default_startup_program().current_block() main_block = paddle.static.default_main_program().current_block() startup_block._find_var_recursive(var.name).is_distributed = True main_block._find_var_recursive(var.name).is_distributed = True class FusedBiasDropoutResidualLayerNorm(Layer): """ Applies fused_bias_dropout_residual_layer_norm operation. Parameters: embed_dim (int): The expected feature size in the input and output. dropout_rate (float, optional): The dropout probability used on attention weights to drop some attention targets for the dropout after attention. 0 for no dropout. Default 0.5. bias_attr (ParamAttr|bool, optional): To specify the bias parameter property. Default: None, which means the default bias parameter property is used. If it is set to False, this layer will not have trainable bias parameter. See usage for details in :code:`ParamAttr`. epsilon (float, optional): The small value added to the variance to prevent division by zero. Default: 1e-05. Examples: .. code-block:: python # required: gpu import paddle # input: [batch_size, seq_len, embed_dim] x = paddle.rand((2, 4, 128)) # residual: [batch_size, seq_len, embed_dim] residual = paddle.rand((2, 4, 128)) fused_bias_dropout_residual_ln = paddle.incubate.nn.FusedBiasDropoutResidualLayerNorm(128) output = fused_bias_dropout_residual_ln(x, residual) # [2, 4, 128] """ def __init__(self, embed_dim, dropout_rate=0.5, weight_attr=None, bias_attr=None, epsilon=1e-5, name=None): super(FusedBiasDropoutResidualLayerNorm, self).__init__() assert embed_dim > 0, ("Expected embed_dim to be greater than 0, " "but recieved {}".format(embed_dim)) self._dtype = self._helper.get_default_dtype() self._bias_attr = bias_attr self._weight_attr = weight_attr self.embed_dim = embed_dim self.linear_bias = self.create_parameter( shape=[embed_dim], attr=self._bias_attr, dtype=self._dtype, is_bias=True) self.ln_scale = self.create_parameter( attr=self._weight_attr, shape=[embed_dim], default_initializer=Constant(value=1.0)) self.ln_bias = self.create_parameter( attr=self._bias_attr, shape=[embed_dim], is_bias=True) self.dropout_rate = dropout_rate self._epsilon = epsilon self.name = name def forward(self, x, residual): """ Applies fused_bias_dropout_residual_layer_norm operation. Parameters: x (Tensor): The input tensor. It is a tensor with shape `[batch_size, seq_len, embed_dim]`. The data type should be float32 or float64. residual (Tensor, optional): The residual tensor. It is a tensor with shape `[batch_size, value_length, vdim]`. The data type should be float32 or float64. Returns: Tensor|tuple: It is a tensor that has the same shape and data type \ as `x`. """ out = incubate_f.fused_bias_dropout_residual_layer_norm( x=x, residual=residual, bias=self.linear_bias, ln_scale=self.ln_scale, ln_bias=self.ln_bias, dropout_rate=self.dropout_rate, ln_epsilon=self._epsilon, training=self.training, mode='upscale_in_train', name=self.name) return out def extra_repr(self): name_str = ', name={}'.format(self.name) if self.name else '' return 'embed_dim={}, seq_len={}, dropout_rate={}, epsilon={}, dtype={}{}'.format( self.embed_dim, self.seq_len, self.dropout_rate, self._epsilon, self._dtype, name_str) class FusedMultiHeadAttention(Layer): """ Attention mapps queries and a set of key-value pairs to outputs, and Multi-Head Attention performs multiple parallel attention to jointly attending to information from different representation subspaces. Please refer to `Attention Is All You Need `_ for more details. Parameters: embed_dim (int): The expected feature size in the input and output. num_heads (int): The number of heads in multi-head attention. dropout_rate (float, optional): The dropout probability used on attention weights to drop some attention targets for the dropout after attention. 0 for no dropout. Default 0.5. attn_dropout_rate (float, optional): The dropout probability used on attention weights to drop some attention targets for the dropout in attention. 0 for no dropout. Default 0.5. kdim (int, optional): The feature size in key. If None, assumed equal to `embed_dim`. Default None. vdim (int, optional): The feature size in value. If None, assumed equal to `embed_dim`. Default None. normalize_before (bool, optional): Indicate whether it is pre_layer_norm (True) or post_layer_norm architecture (False). Default False. need_weights (bool, optional): Indicate whether to return the attention weights. Now, only False is supported. Default False. weight_attr(ParamAttr, optional): To specify the weight parameter property. Default: None, which means the default weight parameter property is used. See usage for details in :code:`ParamAttr`. bias_attr (ParamAttr|bool, optional): To specify the bias parameter property. Default: None, which means the default bias parameter property is used. If it is set to False, this layer will not have trainable bias parameter. See usage for details in :code:`ParamAttr`. epsilon (float, optional): The small value added to the variance to prevent division by zero. Default: 1e-05. Examples: .. code-block:: python # required: gpu import paddle # input: [batch_size, sequence_length, embed_dim] query = paddle.rand((2, 4, 128)) # self attention mask: [batch_size, num_heads, query_len, query_len] attn_mask = paddle.rand((2, 2, 4, 4)) multi_head_attn = paddle.incubate.nn.FusedMultiHeadAttention(128, 2) output = multi_head_attn(query, None, None, attn_mask=attn_mask) # [2, 4, 128] """ def __init__(self, embed_dim, num_heads, dropout_rate=0.5, attn_dropout_rate=0.5, kdim=None, vdim=None, normalize_before=False, need_weights=False, weight_attr=None, bias_attr=None, epsilon=1e-5, name=None): super(FusedMultiHeadAttention, self).__init__() assert embed_dim > 0, ("Expected embed_dim to be greater than 0, " "but received {}".format(embed_dim)) assert num_heads > 0, ("Expected nhead to be greater than 0, " "but received {}".format(num_heads)) self.normalize_before = normalize_before self._dtype = self._helper.get_default_dtype() self._weight_attr = weight_attr self._bias_attr = bias_attr self._epsilon = epsilon self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.kdim = kdim self.vdim = vdim self.need_weights = need_weights assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" assert need_weights == False, "Only support need_weight is False now." self.qkv_weight = self.create_parameter( shape=[3, num_heads, self.head_dim, embed_dim], attr=self._weight_attr, dtype=self._dtype, is_bias=False) self.qkv_bias = self.create_parameter( shape=[3, num_heads, self.head_dim], attr=self._bias_attr, dtype=self._dtype, is_bias=True) self.linear_weight = self.create_parameter( shape=[embed_dim, embed_dim], attr=self._weight_attr, dtype=self._dtype, is_bias=False) self.linear_bias = self.create_parameter( shape=[embed_dim], attr=self._bias_attr, dtype=self._dtype, is_bias=True) self.pre_ln_scale = self.create_parameter( attr=self._weight_attr, shape=[embed_dim], default_initializer=Constant(value=1.0)) self.pre_ln_bias = self.create_parameter( attr=self._bias_attr, shape=[embed_dim], is_bias=True) self.ln_scale = self.create_parameter( attr=self._weight_attr, shape=[embed_dim], default_initializer=Constant(value=1.0)) self.ln_bias = self.create_parameter( attr=self._bias_attr, shape=[embed_dim], is_bias=True) self.dropout_rate = dropout_rate self.attn_dropout_rate = attn_dropout_rate self.name = name def forward(self, query, key=None, value=None, attn_mask=None, cache=None): """ Applies multi-head attention to map queries and a set of key-value pairs to outputs. Parameters: query (Tensor): The queries for multi-head attention. It is a tensor with shape `[batch_size, query_length, embed_dim]`. The data type should be float32 or float64. key (Tensor, optional): The keys for multi-head attention. It is a tensor with shape `[batch_size, key_length, kdim]`. The data type should be float32 or float64. If None, use `query` as `key`. Default None. value (Tensor, optional): The values for multi-head attention. It is a tensor with shape `[batch_size, value_length, vdim]`. The data type should be float32 or float64. If None, use `query` as `value`. Default None. attn_mask (Tensor, optional): A tensor used in multi-head attention to prevents attention to some unwanted positions, usually the paddings or the subsequent positions. It is a tensor with shape broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`. When the data type is bool, the unwanted positions have `False` values and the others have `True` values. When the data type is int, the unwanted positions have 0 values and the others have 1 values. When the data type is float, the unwanted positions have `-INF` values and the others have 0 values. It can be None when nothing wanted or needed to be prevented attention to. Default None. cache (MultiHeadAttention.Cache|MultiHeadAttention.StaticCache, optional): Now, only None is supported. Default None. Returns: Tensor|tuple: It is a tensor that has the same shape and data type \ as `query`, representing attention output. """ if attn_mask is not None: # Support bool or int mask attn_mask = _convert_attention_mask(attn_mask, query.dtype) assert cache == None, "Only support cache is None now." out = incubate_f.fused_multi_head_attention( x=query, qkv_weight=self.qkv_weight, linear_weight=self.linear_weight, pre_layer_norm=self.normalize_before, pre_ln_scale=self.pre_ln_scale, pre_ln_bias=self.pre_ln_bias, ln_scale=self.ln_scale, ln_bias=self.ln_bias, pre_ln_epsilon=self._epsilon, qkv_bias=self.qkv_bias, linear_bias=self.linear_bias, attn_mask=attn_mask, dropout_rate=self.dropout_rate, attn_dropout_rate=self.attn_dropout_rate, ln_epsilon=self._epsilon, training=self.training, name=self.name) return out def extra_repr(self): name_str = ', name={}'.format(self.name) if self.name else '' return 'embed_dim={}, num_heads={}, dropout_rate={}, attn_dropout_rate={}, epsilon={}, kdim={}, vdim={}, normalize_before={}, need_weights={}, dtype={}{}'.format( self.embed_dim, self.num_heads, self.dropout_rate, self.attn_dropout_rate, self._epsilon, self.kdim, self.vdim, self.normalize_before, self.need_weights, self._dtype, name_str) class FusedFeedForward(Layer): """ Parameters: d_model (int): The expected feature size in the input and output. dim_feedforward (int): The hidden layer size. dropout_rate (float, optional): The dropout probability used in pre-process and post-precess. Default 0.1 epsilon (float, optional): he small value added to the variance to prevent division by zero. Default: 1e-05. activation (str, optional): The activation function. Default relu. act_dropout_rate (float, optional): The dropout probability after activition. If None, use the value of `dropout_rate`. Default None normalize_before (bool, optional): Indicate whether to put layer normalization into, preprocessing or postprocessing. Default False weight_attr (ParamAttr, optional): The attribute for the learnable weight of this layer. The default value is None and the weight will be initialized to zero. For detailed information, please refer to paddle.ParamAttr. bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias of thi layer. If it is set to False, no bias will be added to the output. If it is set to None or one kind of ParamAttr, a bias parameter will be created according to ParamAttr. For detailed information, please refer to paddle.ParamAttr. The default value is None and the bias will be initialized to zero. Examples: .. code-block:: python # required: gpu import paddle from paddle.incubate.nn import FusedFeedForward fused_feedforward_layer = FusedFeedForward(8, 8) x = paddle.rand((1, 8, 8)) out = fused_feedforward_layer(x) print(out.numpy().shape) # (1, 8, 8) """ def __init__(self, d_model, dim_feedforward, dropout_rate=0.1, epsilon=1e-05, activation="relu", act_dropout_rate=None, normalize_before=False, weight_attr=None, bias_attr=None, name=None): super(FusedFeedForward, self).__init__() assert d_model > 0, ( "Expected d_model to be greater than 0, but received {}".format( d_model)) assert dim_feedforward > 0, ( "Expected dim_feedforward to be greater than 0, but received {}". format(dim_feedforward)) self._dtype = self._helper.get_default_dtype() self._d_model = d_model self._dim_feedforward = dim_feedforward self._dropout_rate = dropout_rate self._act_dropout_rate = dropout_rate if act_dropout_rate is None else act_dropout_rate self._act_method = activation self._normalize_before = normalize_before self._epsilon = epsilon self._linear1_weight = self.create_parameter( shape=[d_model, dim_feedforward], attr=weight_attr, dtype=self._dtype, is_bias=False) self._linear1_bias = self.create_parameter( shape=[dim_feedforward], attr=bias_attr, dtype=self._dtype, is_bias=True) self._linear2_weight = self.create_parameter( shape=[dim_feedforward, d_model], attr=weight_attr, dtype=self._dtype, is_bias=False) self._linear2_bias = self.create_parameter( shape=[d_model], attr=bias_attr, dtype=self._dtype, is_bias=True) self._ln1_scale = self.create_parameter( shape=[d_model], attr=None, is_bias=False, default_initializer=Constant(1.0)) self._ln1_bias = self.create_parameter( shape=[d_model], attr=None, is_bias=True) self._ln2_scale = self.create_parameter( shape=[d_model], attr=None, is_bias=False, default_initializer=Constant(1.0)) self._ln2_bias = self.create_parameter( shape=[d_model], attr=None, is_bias=True) self.name = name def forward(self, src, cache=None): out = incubate_f.fused_feedforward( src, self._linear1_weight, self._linear2_weight, self._linear1_bias, self._linear2_bias, self._ln1_scale, self._ln1_bias, self._ln2_scale, self._ln2_bias, dropout1_rate=self._act_dropout_rate, dropout2_rate=self._dropout_rate, activation=self._act_method, ln1_epsilon=self._epsilon, ln2_epsilon=self._epsilon, pre_layer_norm=self._normalize_before, training=self.training, name=self.name) return out def extra_repr(self): name_str = ', name={}'.format(self.name) if self.name else '' return 'd_model={}, dim_feedforward={}, dropout_rate={}, epsilon={}, activation={}, act_dropout_rate={}, normalize_before={}, dtype={}{}'.format( self._d_model, self._dim_feedforward, self._dropout_rate, self._epsilon, self._act_method, self._act_dropout_rate, self._normalize_before, self._dtype, name_str) class FusedTransformerEncoderLayer(Layer): """ FusedTransformerEncoderLayer is composed of two sub-layers which are self (multi-head) attention and feedforward network. Before and after each sub-layer, pre-process and post-precess would be applied on the input and output accordingly. If `normalize_before` is True, pre-process is layer normalization and post-precess includes dropout, residual connection. Otherwise, no pre-process and post-precess includes dropout, residual connection, layer normalization. Parameters: d_model (int): The expected feature size in the input and output. nhead (int): The number of heads in multi-head attention(MHA). dim_feedforward (int): The hidden layer size in the feedforward network(FFN). dropout_rate (float, optional): The dropout probability used in pre-process and post-precess of MHA and FFN sub-layer. Default 0.1 activation (str, optional): The activation function in the feedforward network. Default relu. attn_dropout_rate (float, optional): The dropout probability used in MHA to drop some attention target. If None, use the value of `dropout`. Default None act_dropout_rate (float, optional): The dropout probability used after FFN activition. If None, use the value of `dropout`. Default None normalize_before (bool, optional): Indicate whether to put layer normalization into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer normalization and post-precess includes dropout, residual connection. Otherwise, no pre-process and post-precess includes dropout, residual connection, layer normalization. Default False weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property. If it is a list/tuple, `weight_attr[0]` would be used as `weight_attr` for MHA, and `weight_attr[1]` would be used as `weight_attr` for linear in FFN. Otherwise, MHA and FFN both use it as `weight_attr` to create parameters. Default: None, which means the default weight parameter property is used. See usage for details in :code:`ParamAttr` . bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property. If it is a list/tuple, `bias_attr[0]` would be used as `bias_attr` for MHA, and `bias_attr[1]` would be used as `bias_attr` for linear in FFN. Otherwise, MHA and FFN both use it as `bias_attr` to create parameters. The `False` value means the corresponding layer would not have trainable bias parameter. See usage for details in :code:`ParamAttr` . Default: None, which means the default bias parameter property is used. Examples: .. code-block:: python # required: gpu import paddle from paddle.incubate.nn import FusedTransformerEncoderLayer # encoder input: [batch_size, src_len, d_model] enc_input = paddle.rand((2, 4, 128)) # self attention mask: [batch_size, n_head, src_len, src_len] attn_mask = paddle.rand((2, 2, 4, 4)) encoder_layer = FusedTransformerEncoderLayer(128, 2, 512) enc_output = encoder_layer(enc_input, attn_mask) # [2, 4, 128] """ def __init__(self, d_model, nhead, dim_feedforward, dropout_rate=0.1, activation="relu", attn_dropout_rate=None, act_dropout_rate=None, normalize_before=False, weight_attr=None, bias_attr=None): self._config = locals() self._config.pop("self") self._config.pop("__class__", None) # py3 super(FusedTransformerEncoderLayer, self).__init__() assert d_model > 0, ("Expected d_model to be greater than 0, " "but received {}".format(d_model)) assert nhead > 0, ("Expected nhead to be greater than 0, " "but received {}".format(nhead)) assert dim_feedforward > 0, ( "Expected dim_feedforward to be greater than 0, " "but received {}".format(dim_feedforward)) attn_dropout_rate = dropout_rate if attn_dropout_rate is None else attn_dropout_rate act_dropout_rate = dropout_rate if act_dropout_rate is None else act_dropout_rate self.normalize_before = normalize_before weight_attrs = _convert_param_attr_to_list(weight_attr, 2) bias_attrs = _convert_param_attr_to_list(bias_attr, 2) self.fused_attn = FusedMultiHeadAttention( d_model, nhead, dropout_rate=dropout_rate, attn_dropout_rate=attn_dropout_rate, normalize_before=self.normalize_before, weight_attr=weight_attrs[0], bias_attr=bias_attrs[0]) self.ffn = FusedFeedForward( d_model, dim_feedforward, dropout_rate=dropout_rate, activation=activation, act_dropout_rate=act_dropout_rate, normalize_before=self.normalize_before, weight_attr=weight_attrs[1], bias_attr=bias_attrs[1]) def forward(self, src, src_mask=None, cache=None): """ Applies a Transformer encoder layer on the input. Parameters: src (Tensor): The input of Transformer encoder layer. It is a tensor with shape `[batch_size, sequence_length, d_model]`. The data type should be float32 or float64. src_mask (Tensor, optional): A tensor used in multi-head attention to prevents attention to some unwanted positions, usually the paddings or the subsequent positions. It is a tensor with shape broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`. When the data type is bool, the unwanted positions have `False` values and the others have `True` values. When the data type is int, the unwanted positions have 0 values and the others have 1 values. When the data type is float, the unwanted positions have `-INF` values and the others have 0 values. It can be None when nothing wanted or needed to be prevented attention to. Default None. cache (Tensor, optional): It is an instance of `MultiHeadAttention.Cache`. See `TransformerEncoderLayer.gen_cache` for more details. It is only used for inference and should be None for training. Default None. Returns: Tensor|tuple: It is a tensor that has the same shape and data type \ as `enc_input`, representing the output of Transformer encoder \ layer. Or a tuple if `cache` is not None, except for encoder \ layer output, the tuple includes the new cache which is same \ as input `cache` argument but `incremental_cache` has an \ incremental length. See `MultiHeadAttention.gen_cache` and \ `MultiHeadAttention.forward` for more details. """ src_mask = _convert_attention_mask(src_mask, src.dtype) if cache is None: attn_out = self.fused_attn(src, attn_mask=src_mask) else: attn_out, incremental_cache = self.fused_attn( src, attn_mask=src_mask, cache=cache) ffn_out = self.ffn(attn_out) return ffn_out if cache is None else (ffn_out, incremental_cache) class FusedTransformer(Layer): """ A Transformer model composed of an instance of `TransformerEncoder` and an instance of `TransformerDecoder`. While the embedding layer and output layer are not included. Please refer to `Attention is all you need `_ , and see `TransformerEncoder` and `TransformerDecoder` for more details. Users can configurate the model architecture with corresponding parameters. Note the usage of `normalize_before` representing where to apply layer normalization (in pre-process or post-precess of multi-head attention or FFN), and some transformer like models are different on this, such as `BERT `_ and `GPT2 `_ . The default architecture here places layer normalization in post-process and applies another layer normalization on the output of last encoder/decoder layer. Parameters: d_model (int, optional): The expected feature size in the encoder/decoder input and output. Default 512 nhead (int, optional): The number of heads in multi-head attention(MHA). Default 8 num_encoder_layers (int, optional): The number of layers in encoder. Default 6 num_decoder_layers (int, optional): The number of layers in decoder. Default 6 dim_feedforward (int, optional): The hidden layer size in the feedforward network(FFN). Default 2048 dropout (float, optional): The dropout probability used in pre-process and post-precess of MHA and FFN sub-layer. Default 0.1 activation (str, optional): The activation function in the feedforward network. Default relu. attn_dropout (float, optional): The dropout probability used in MHA to drop some attention target. If None, use the value of `dropout`. Default None act_dropout (float, optional): The dropout probability used after FFN activition. If None, use the value of `dropout`. Default None normalize_before (bool, optional): Indicate whether to put layer normalization into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer normalization and post-precess includes dropout, residual connection. Otherwise, no pre-process and post-precess includes dropout, residual connection, layer normalization. Default False weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property. If it is a list/tuple, the length of `weight_attr` could be 1, 2 or 3. If it is 3, `weight_attr[0]` would be used as `weight_attr` for self attention, `weight_attr[1]` would be used as `weight_attr` for cross attention of `TransformerDecoder`, and `weight_attr[2]` would be used as `weight_attr` for linear in FFN. If it is 2, `weight_attr[0]` would be used as `weight_attr` both for self attention and cross attntion and `weight_attr[1]` would be used as `weight_attr` for linear in FFN. If it is 1, `weight_attr[0]` would be used as `weight_attr` for self attention, cross attention and linear in FFN. Otherwise, the three sub-layers all uses it as `weight_attr` to create parameters. Default: None, which means the default weight parameter property is used. See usage for details in :code:`ParamAttr` . bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property. If it is a list/tuple, the length of `bias_attr` could be 1, 2 or 3. If it is 3, `bias_attr[0]` would be used as `bias_attr` for self attention, `bias_attr[1]` would be used as `bias_attr` for cross attention of `TransformerDecoder`, and `bias_attr[2]` would be used as `bias_attr` for linear in FFN. If it is 2, `bias_attr[0]` would be used as `bias_attr` both for self attention and cross attntion and `bias_attr[1]` would be used as `bias_attr` for linear in FFN. If it is 1, `bias_attr[0]` would be used as `bias_attr` for self attention, cross attention and linear in FFN. Otherwise, the three sub-layers all uses it as `bias_attr` to create parameters. The `False` value means the corresponding layer would not have trainable bias parameter. See usage for details in :code:`ParamAttr` . Default: None,which means the default bias parameter property is used. custom_encoder (Layer, optional): If custom encoder is provided, use it as the encoder. Default None custom_decoder (Layer, optional): If custom decoder is provided, use it as the decoder. Default None Examples: .. code-block:: python import paddle from paddle.nn import Transformer # src: [batch_size, tgt_len, d_model] enc_input = paddle.rand((2, 4, 128)) # tgt: [batch_size, src_len, d_model] dec_input = paddle.rand((2, 6, 128)) # src_mask: [batch_size, n_head, src_len, src_len] enc_self_attn_mask = paddle.rand((2, 2, 4, 4)) # tgt_mask: [batch_size, n_head, tgt_len, tgt_len] dec_self_attn_mask = paddle.rand((2, 2, 6, 6)) # memory_mask: [batch_size, n_head, tgt_len, src_len] cross_attn_mask = paddle.rand((2, 2, 6, 4)) transformer = Transformer(128, 2, 4, 4, 512) output = transformer(enc_input, dec_input, enc_self_attn_mask, dec_self_attn_mask, cross_attn_mask) # [2, 6, 128] """ def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation="relu", attn_dropout=None, act_dropout=None, normalize_before=False, weight_attr=None, bias_attr=None, custom_encoder=None, custom_decoder=None): super(fusedTransformer, self).__init__() raise NotImplementedError() def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None): raise NotImplementedError() class FusedMultiTransformer(Layer): """ FusedMultiTransformer is composed of multi transformer layers which contains two sub-layers which are self (multi-head) attention and feedforward network. The function of one transformer layer is consistent with the following pseudo code: .. code-block:: python if pre_layer_norm: out = layer_norm(x) out = qkv_linear(out) + qkv_bias else: out = qkv_linear(x) + qkv_bias out = transpose(out, perm=[2, 0, 3, 1, 4]) # extract q, k and v from out. q = out[0:1, ::] k = out[1:2, ::] v = out[2:3, ::] out = q * k^t out = attn_mask + out out = softmax(out) out = dropout(out) out = out * v out = transpose(out, perm=[0, 2, 1, 3]) out = linear(out) if pre_layer_norm: out = x + dropout(out + bias) else: out = layer_norm(x + dropout(out + bias)) residual = out; if pre_layer_norm: out = ffn_layer_norm(out) out = ffn1_linear(out) out = dropout(activation(out + ffn1_bias)) out = ffn2_linear(out) out = residual + dropout(out + ffn2_bias) if not pre_layer_norm: out = ffn_layer_norm(out) Parameters: embed_dim (int): The expected feature size in the input and output. num_heads (int): The number of heads in multi-head attention(MHA). dim_feedforward (int): The hidden layer size in the feedforward network(FFN). dropout_rate (float, optional): The dropout probability used in pre-process and post-precess of MHA and FFN sub-layer. Default 0.0 activation (str, optional): The activation function in the feedforward network. Default "gelu". normalize_before (bool, optional): Indicate whether to put layer normalization into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer normalization and post-precess includes dropout, residual connection. Otherwise, no pre-process and post-precess includes dropout, residual connection, layer normalization. Default True ln_scale_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property for Attention layer_norm. For Attention layer_norm weight, if it is a list/tuple, `attrs[0]` would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as `attr` for transformer layer 1,etc. Otherwise, all layers both use it as `attr` to create parameters. Default: None, which means the default weight parameter property is used. See usage for details in :code:`ParamAttr`. ln_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property for Attention layer_norm. For Attention layer_norm bias, if it is a list/tuple, `attrs[0]` would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as `attr` for transformer layer 1,etc. Otherwise, all layers both use it as `attr` to create parameters. The `False` value means the corresponding layer would not have trainable bias parameter. Default: None, which means the default bias parameter property is used. See usage for details in :code:`ParamAttr`. qkv_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property for Attention qkv computation. For Attention qkv weight, if it is a list/tuple, `attrs[0]` would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as `attr` for transformer layer 1,etc. Otherwise, all layers both use it as `attr` to create parameters. Default: None, which means the default weight parameter property is used. See usage for details in :code:`ParamAttr`. qkv_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property for Attention qkv computation. For Attention qkv bias, if it is a list/tuple, `attrs[0]` would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as `attr` for transformer layer 1,etc. Otherwise, all layers both use it as `attr` to create parameters. The `False` value means the corresponding layer would not have trainable bias parameter. Default: None, which means the default bias parameter property is used. See usage for details in :code:`ParamAttr`. linear_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property for Attention linear. For Attention linear weight, if it is a list/tuple, `attrs[0]` would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as `attr` for transformer layer 1,etc. Otherwise, all layers both use it as `attr` to create parameters. Default: None, which means the default weight parameter property is used. See usage for details in :code:`ParamAttr`. linear_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property for Attention linear computation. For Attention linear bias, if it is a list/tuple, `attrs[0]` would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as `attr` for transformer layer 1,etc. Otherwise, all layers both use it as `attr` to create parameters. The `False` value means the corresponding layer would not have trainable bias parameter. Default: None, which means the default bias parameter property is used. See usage for details in :code:`ParamAttr`. ffn_ln_scale_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property for FFN layer_norm. For FFN layer_norm weight, if it is a list/tuple, `attrs[0]` would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as `attr` for transformer layer 1,etc. Otherwise, all layers both use it as `attr` to create parameters. Default: None, which means the default weight parameter property is used. See usage for details in :code:`ParamAttr`. ffn_ln_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property for FFN layer_norm. For FFN layer_norm bias, if it is a list/tuple, `attrs[0]` would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as `attr` for transformer layer 1,etc. Otherwise, all layers both use it as `attr` to create parameters. The `False` value means the corresponding layer would not have trainable bias parameter. Default: None, which means the default bias parameter property is used. See usage for details in :code:`ParamAttr`. ffn1_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property for FFN first linear. For FFN first linear weight, if it is a list/tuple, `attrs[0]` would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as `attr` for transformer layer 1,etc. Otherwise, all layers both use it as `attr` to create parameters. Default: None, which means the default weight parameter property is used. See usage for details in :code:`ParamAttr`. ffn1_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property for FFN first linear. For FFN first linear bias, if it is a list/tuple, `attrs[0]` would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as `attr` for transformer layer 1,etc. Otherwise, all layers both use it as `attr` to create parameters. The `False` value means the corresponding layer would not have trainable bias parameter. Default: None, which means the default bias parameter property is used. See usage for details in :code:`ParamAttr`. ffn2_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property for FFN second linear. For FFN second linear weight, if it is a list/tuple, `attrs[0]` would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as `attr` for transformer layer 1,etc. Otherwise, all layers both use it as `attr` to create parameters. Default: None, which means the default weight parameter property is used. See usage for details in :code:`ParamAttr`. ffn2_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property for FFN second linear. For FFN second linear bias, if it is a list/tuple, `attrs[0]` would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as `attr` for transformer layer 1,etc. Otherwise, all layers both use it as `attr` to create parameters. The `False` value means the corresponding layer would not have trainable bias parameter. Default: None, which means the default bias parameter property is used. See usage for details in :code:`ParamAttr`. epsilon (float, optional): Small float value added to denominator of the layer_norm to avoid dividing by zero. Default: 1e-05. num_layers (int, optional): The number of layers of the transformer. If `qkv_weight_attrs` is a list or tuple, the number of layers is obtained from `qkv_weight_attrs`. num_layers only takes effect when `qkv_weight_attrs` is not a list or tuple. Default: -1. nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using mp. ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using mp. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Examples: .. code-block:: python # required: gpu import paddle from paddle.incubate.nn import FusedMultiTransformer # encoder input: [batch_size, src_len, d_model] enc_input = paddle.rand((2, 4, 128)) # self attention mask: [batch_size, 1, src_len, src_len] attn_mask = paddle.rand((2, 1, 4, 4)) encoder_layers = FusedMultiTransformer(128, 2, 512, num_layers=1) enc_output = encoder_layers(enc_input, attn_mask) # [2, 4, 128] """ def __init__(self, embed_dim, num_heads, dim_feedforward, dropout_rate=0.0, activation="gelu", normalize_before=True, ln_scale_attrs=None, ln_bias_attrs=None, qkv_weight_attrs=None, qkv_bias_attrs=None, linear_weight_attrs=None, linear_bias_attrs=None, ffn_ln_scale_attrs=None, ffn_ln_bias_attrs=None, ffn1_weight_attrs=None, ffn1_bias_attrs=None, ffn2_weight_attrs=None, ffn2_bias_attrs=None, epsilon=1e-5, num_layers=-1, nranks=1, ring_id=-1, name=None): super(FusedMultiTransformer, self).__init__() assert embed_dim > 0, ("Expected embed_dim to be greater than 0, " "but received {}".format(embed_dim)) assert num_heads > 0, ("Expected nhead to be greater than 0, " "but received {}".format(num_heads)) assert dim_feedforward > 0, ( "Expected dim_feedforward to be greater than 0, but received {}". format(dim_feedforward)) self.normalize_before = normalize_before self._dtype = self._helper.get_default_dtype() self._epsilon = epsilon self._ring_id = ring_id self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" # tensor model parallel if nranks > 1: assert ring_id != -1 assert num_heads % nranks == 0 assert dim_feedforward % nranks == 0 num_heads = num_heads // nranks dim_feedforward = dim_feedforward // nranks self._dim_feedforward = dim_feedforward if isinstance(qkv_weight_attrs, (list, tuple)): num_layers = len(qkv_weight_attrs) assert num_layers > 0 self.ln_scales, self.ln_biases = [], [] self.qkv_weights, self.qkv_biases = [], [] self.linear_weights, self.linear_biases = [], [] self.ffn_ln_scales, self.ffn_ln_biases = [], [] self.ffn1_weights, self.ffn1_biases = [], [] self.ffn2_weights, self.ffn2_biases = [], [] def get_attr(attrs, idx): if isinstance(attrs, (list, tuple)): assert len(attrs) == num_layers return attrs[idx] return attrs for i in range(num_layers): ln_scale_attr = get_attr(ln_scale_attrs, i) ln_bias_attr = get_attr(ln_bias_attrs, i) qkv_weight_attr = get_attr(qkv_weight_attrs, i) qkv_bias_attr = get_attr(qkv_bias_attrs, i) linear_weight_attr = get_attr(linear_weight_attrs, i) linear_bias_attr = get_attr(linear_bias_attrs, i) ffn_ln_scale_attr = get_attr(ffn_ln_scale_attrs, i) ffn_ln_bias_attr = get_attr(ffn_ln_bias_attrs, i) ffn1_weight_attr = get_attr(ffn1_weight_attrs, i) ffn1_bias_attr = get_attr(ffn1_bias_attrs, i) ffn2_weight_attr = get_attr(ffn2_weight_attrs, i) ffn2_bias_attr = get_attr(ffn2_bias_attrs, i) ln_scale = self.create_parameter( attr=ln_scale_attr, shape=[embed_dim], default_initializer=Constant(value=1.0)) ln_bias = self.create_parameter( attr=ln_bias_attr, shape=[embed_dim], is_bias=True) qkv_weight = self.create_parameter( shape=[3, num_heads, self.head_dim, embed_dim], attr=qkv_weight_attr, dtype=self._dtype, is_bias=False) qkv_bias = self.create_parameter( shape=[3, num_heads, self.head_dim], attr=qkv_bias_attr, dtype=self._dtype, is_bias=True) linear_weight = self.create_parameter( shape=[num_heads * self.head_dim, embed_dim], attr=linear_weight_attr, dtype=self._dtype, is_bias=False) linear_bias = self.create_parameter( shape=[embed_dim], attr=linear_bias_attr, dtype=self._dtype, is_bias=True) ffn_ln_scale = self.create_parameter( shape=[embed_dim], attr=ffn_ln_scale_attr, is_bias=False, default_initializer=Constant(1.0)) ffn_ln_bias = self.create_parameter( shape=[embed_dim], attr=ffn_ln_bias_attr, is_bias=True) ffn1_weight = self.create_parameter( shape=[embed_dim, dim_feedforward], attr=ffn1_weight_attr, dtype=self._dtype, is_bias=False) ffn1_bias = self.create_parameter( shape=[dim_feedforward], attr=ffn1_bias_attr, dtype=self._dtype, is_bias=True) ffn2_weight = self.create_parameter( shape=[dim_feedforward, embed_dim], attr=ffn2_weight_attr, dtype=self._dtype, is_bias=False) ffn2_bias = self.create_parameter( shape=[embed_dim], attr=ffn2_bias_attr, dtype=self._dtype, is_bias=True) # tensor model parallel if nranks > 1: # column parallel _set_var_distributed(qkv_weight) _set_var_distributed(qkv_bias) _set_var_distributed(ffn1_weight) _set_var_distributed(ffn1_bias) # row parallel _set_var_distributed(linear_weight) _set_var_distributed(ffn2_weight) self.ln_scales.append(ln_scale) self.ln_biases.append(ln_bias) self.qkv_weights.append(qkv_weight) self.qkv_biases.append(qkv_bias) self.linear_weights.append(linear_weight) self.linear_biases.append(linear_bias) self.ffn_ln_scales.append(ffn_ln_scale) self.ffn_ln_biases.append(ffn_ln_bias) self.ffn1_weights.append(ffn1_weight) self.ffn1_biases.append(ffn1_bias) self.ffn2_weights.append(ffn2_weight) self.ffn2_biases.append(ffn2_bias) self.dropout_rate = dropout_rate self.activation = activation self.name = name def forward(self, src, attn_mask=None, caches=None, time_step=None): """ Applies multi transformer layers on the input. Parameters: src (Tensor): The input of Transformer layers. It is a tensor with shape `[batch_size, sequence_length, d_model]`. The data type should be float16 or float32. attn_mask (Tensor, optional): A tensor used in multi-head attention to prevents attention to some unwanted positions, usually the paddings or the subsequent positions. It is a tensor with shape `[batch_size, 1, sequence_length, sequence_length]`. It can be None when nothing wanted or needed to be prevented attention to. Default None. caches (list(Tensor)|tuple(Tensor), optional): The cache structure tensors for the inference generation model. It is only used for inference and should be None for training. The shape is `[2, batch_size, num_head, max_seq_len, head_dim]`. Default None. time_step (Tensor, optional): The time step tensor for the generation model. Which used in decode stage, to represent the time step, that is, the real seq_len of CacheKV. The shape is `[1]`, must be in CPUPlace. Default None. Returns: Tensor|tuple: If `caches` is None, return a tensor that has the same shape and data type with `src`, representing the output of Transformer layers. If `caches` is not None, return the tuple (output, caches), which output is the output of Transformer layers, caches is inplace with input `caches`. """ if caches is not None: assert len(caches) == len(self.qkv_weights) out = incubate_f.fused_multi_transformer( src, self.ln_scales, self.ln_biases, self.qkv_weights, self.qkv_biases, self.linear_weights, self.linear_biases, self.ffn_ln_scales, self.ffn_ln_biases, self.ffn1_weights, self.ffn1_biases, self.ffn2_weights, self.ffn2_biases, pre_layer_norm=self.normalize_before, epsilon=self._epsilon, cache_kvs=caches, time_step=time_step, attn_mask=attn_mask, dropout_rate=self.dropout_rate, activation=self.activation, training=self.training, mode='upscale_in_train', ring_id=self._ring_id, name=self.name) return out