// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "gtest/gtest.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/place.h" #include "paddle/phi/core/kernel_registry.h" USE_OP_ITSELF(pool2d); USE_OP_DEVICE_KERNEL(pool2d, MKLDNN); USE_OP_ITSELF(relu); PD_DECLARE_KERNEL(relu, OneDNN, ALL_LAYOUT); USE_OP_ITSELF(transpose); USE_OP_DEVICE_KERNEL(transpose, MKLDNN); USE_OP_ITSELF(shape); PD_DECLARE_KERNEL(shape, OneDNN, ALL_LAYOUT); USE_OP_ITSELF(crop); USE_OP_DEVICE_KERNEL(crop, CPU); PD_DECLARE_KERNEL(pool2d, CPU, ALL_LAYOUT); PD_DECLARE_KERNEL(relu, CPU, ALL_LAYOUT); PD_DECLARE_KERNEL(shape, CPU, ALL_LAYOUT); namespace paddle { namespace operators { struct InputVars { std::string name; framework::LoDTensor *tensor; }; TEST(test_pool2d_transpose_nhwc, cpu_place) { framework::DDim dims({1, 4, 8, 512}); // NHWC shape framework::DDim expected_dims({1, 7, 512, 3}); // NHWC expected shape platform::CPUPlace p; framework::Scope scope; InputVars input_name = {"x", scope.Var("x")->GetMutable()}; // Initialize input data std::uniform_real_distribution dist(static_cast(10.0), static_cast(20.0)); std::mt19937 engine; size_t numel = static_cast(phi::product(dims)); input_name.tensor->Resize(dims); auto data_ptr = input_name.tensor->mutable_data(p); for (size_t i = 0; i < numel; ++i) { data_ptr[i] = dist(engine); } scope.Var("y")->GetMutable(); auto *z = scope.Var("z")->GetMutable(); auto &pool = platform::DeviceContextPool::Instance(); // Make pool2d followed by transpose auto ksize = std::vector(2, 2); auto op_pool = framework::OpRegistry::CreateOp("pool2d", {{"X", {"x"}}}, {{"Out", {"y"}}}, {{"pooling_type", {std::string("max")}}, {"ksize", {ksize}}, {"data_format", {std::string("NHWC")}}, {"use_mkldnn", {true}}}); auto axis = std::vector(4, 0); axis[1] = 2; axis[2] = 3; axis[3] = 1; auto op_transpose = framework::OpRegistry::CreateOp( "transpose", {{"X", {"y"}}}, {{"Out", {"z"}}}, {{"axis", {axis}}, {"use_mkldnn", {true}}}); op_pool->Run(scope, p); op_transpose->Run(scope, p); pool.Get(p)->Wait(); // Verify shape of output PADDLE_ENFORCE_EQ(z->dims(), expected_dims, platform::errors::InvalidArgument( "Computed shape does not match expected shape")); } TEST(test_pool2d_relu_relu_nhwc, cpu_place) { framework::DDim dims({1, 4, 8, 512}); // NHWC shape framework::DDim expected_dims({1, 512, 3, 7}); // NCHW expected shape platform::CPUPlace p; framework::Scope scope; InputVars input_name = {"x", scope.Var("x")->GetMutable()}; // Initialize input data std::uniform_real_distribution dist(static_cast(10.0), static_cast(20.0)); std::mt19937 engine; size_t numel = static_cast(phi::product(dims)); input_name.tensor->Resize(dims); auto data_ptr = input_name.tensor->mutable_data(p); for (size_t i = 0; i < numel; ++i) { data_ptr[i] = dist(engine); } scope.Var("y")->GetMutable(); scope.Var("u")->GetMutable(); auto *z = scope.Var("z")->GetMutable(); auto &pool = platform::DeviceContextPool::Instance(); // Make pool2d(oneDNN) followed by relu(CPU paddle) followed by // relu(oneDNN). Second relu should make a shape rotation to NCHW auto ksize = std::vector(2, 2); auto op_pool = framework::OpRegistry::CreateOp("pool2d", {{"X", {"x"}}}, {{"Out", {"y"}}}, {{"pooling_type", {std::string("max")}}, {"ksize", {ksize}}, {"data_format", {std::string("NHWC")}}, {"use_mkldnn", {true}}}); auto axis = std::vector(4, 0); axis[1] = 2; axis[2] = 3; axis[3] = 1; auto op_relu1 = framework::OpRegistry::CreateOp( "relu", {{"X", {"y"}}}, {{"Out", {"u"}}}, {{"axis", {axis}}, {"use_mkldnn", {false}}}); auto op_relu2 = framework::OpRegistry::CreateOp( "relu", {{"X", {"u"}}}, {{"Out", {"z"}}}, {{"use_mkldnn", {true}}}); op_pool->Run(scope, p); op_relu1->Run(scope, p); op_relu2->Run(scope, p); pool.Get(p)->Wait(); // Verify shape of output PADDLE_ENFORCE_EQ(z->dims(), expected_dims, platform::errors::InvalidArgument( "Computed shape does not match expected shape")); } TEST(test_pool2d_shape_nhwc, cpu_place) { framework::DDim dims({1, 4, 8, 512}); // NHWC shape std::vector expected_dims{1, 3, 7, 512}; // NHWC expected shape platform::CPUPlace p; framework::Scope scope; InputVars input_name = {"x", scope.Var("x")->GetMutable()}; // Initialize input data std::uniform_real_distribution dist(static_cast(10.0), static_cast(20.0)); std::mt19937 engine; size_t numel = static_cast(phi::product(dims)); input_name.tensor->Resize(dims); auto data_ptr = input_name.tensor->mutable_data(p); for (size_t i = 0; i < numel; ++i) { data_ptr[i] = dist(engine); } scope.Var("y")->GetMutable(); auto *z = scope.Var("z")->GetMutable(); auto &pool = platform::DeviceContextPool::Instance(); // Make pool2d followed by shape. shape for NHWC should return // as output tensor not-rotated shape of Pool ( auto ksize = std::vector(2, 2); auto op_pool = framework::OpRegistry::CreateOp("pool2d", {{"X", {"x"}}}, {{"Out", {"y"}}}, {{"pooling_type", {std::string("max")}}, {"ksize", {ksize}}, {"data_format", {std::string("NHWC")}}, {"use_mkldnn", {true}}}); auto op_shape = framework::OpRegistry::CreateOp( "shape", {{"Input", {"y"}}}, {{"Out", {"z"}}}, {{"use_mkldnn", {true}}}); op_pool->Run(scope, p); op_shape->Run(scope, p); pool.Get(p)->Wait(); // repack tensor data into vector for easy comparison auto *zdata = z->data(); std::vector vzdata(zdata, zdata + z->numel()); // Verify shape of output PADDLE_ENFORCE_EQ(vzdata, expected_dims, platform::errors::InvalidArgument( "Computed shape does not match expected shape")); } TEST(test_pool2d_crop_nhwc, cpu_place) { framework::DDim dims({1, 4, 8, 512}); // NHWC shape framework::DDim expected_dims({1, 3, 7, 512}); // NCHW expected shape platform::CPUPlace p; framework::Scope scope; InputVars input_name = {"x", scope.Var("x")->GetMutable()}; InputVars second_crop_input_name = { "v", scope.Var("v")->GetMutable()}; // Initialize input data std::uniform_real_distribution dist(10.0f, 20.0f); std::mt19937 engine; size_t numel = static_cast(phi::product(dims)); input_name.tensor->Resize(dims); auto data_ptr = input_name.tensor->mutable_data(p); for (size_t i = 0; i < numel; ++i) { data_ptr[i] = dist(engine); } // Second input (Y) to crop is having no buffer // but as it is MKLDNN then its shape order should be NCHW auto expected_dims_nchw = phi::vectorize(expected_dims); std::rotate(expected_dims_nchw.begin() + 1, expected_dims_nchw.end() - 1, expected_dims_nchw.end()); second_crop_input_name.tensor->Resize(phi::make_ddim(expected_dims_nchw)); const auto second_crop_input_md = dnnl::memory::desc(expected_dims_nchw, dnnl::memory::data_type::f32, dnnl::memory::format_tag::nhwc); second_crop_input_name.tensor->set_mem_desc(second_crop_input_md); scope.Var("y")->GetMutable(); auto *z = scope.Var("z")->GetMutable(); auto &pool = platform::DeviceContextPool::Instance(); // Make pool2d followed by crop. crop may have Y input as // non buffered so the path to be executed is handling oneDNN kernel // that is followed by CPU kernel with non-buffered Input auto ksize = std::vector(2, 2); auto op_pool = framework::OpRegistry::CreateOp("pool2d", {{"X", {"x"}}}, {{"Out", {"y"}}}, {{"pooling_type", {std::string("max")}}, {"ksize", {ksize}}, {"data_format", {std::string("NHWC")}}, {"use_mkldnn", {true}}}); std::vector offsets{0, 0, 0, 0}; auto op_crop = framework::OpRegistry::CreateOp("crop", {{"X", {"y"}}, {"Y", {"v"}}}, {{"Out", {"z"}}}, {{"offsets", {offsets}}}); op_pool->Run(scope, p); op_crop->Run(scope, p); pool.Get(p)->Wait(); // Verify shape of output PADDLE_ENFORCE_EQ(z->dims(), expected_dims, platform::errors::InvalidArgument( "Output shape does not match expected output shape")); } } // namespace operators } // namespace paddle