# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest import paddle.fluid as fluid class TestHashOp(OpTest): def setUp(self): self.op_type = "hash" self.init_test_case() self.inputs = {'X': (self.in_seq, self.lod)} self.attrs = {'num_hash': 2, 'mod_by': 10000} self.outputs = {'Out': (self.out_seq, self.lod)} def init_test_case(self): np.random.seed(1) self.in_seq = np.random.randint(0, 10, (8, 1)).astype("int32") self.lod = [[2, 6]] self.out_seq = [[[3481], [7475]], [[1719], [5986]], [[8473], [694]], [[3481], [7475]], [[4372], [9456]], [[4372], [9456]], [[6897], [3218]], [[9038], [7951]]] self.out_seq = np.array(self.out_seq) def test_check_output(self): self.check_output() class TestHashNotLoDOp(TestHashOp): def setUp(self): self.op_type = "hash" self.init_test_case() self.inputs = {'X': self.in_seq} self.attrs = {'num_hash': 2, 'mod_by': 10000} self.outputs = {'Out': self.out_seq} def init_test_case(self): np.random.seed(1) self.in_seq = np.random.randint(0, 10, (8, 1)).astype("int32") self.out_seq = [[[3481], [7475]], [[1719], [5986]], [[8473], [694]], [[3481], [7475]], [[4372], [9456]], [[4372], [9456]], [[6897], [3218]], [[9038], [7951]]] self.out_seq = np.array(self.out_seq) def test_check_output(self): self.check_output() class TestHashOp2(TestHashOp): """ Case: int64 type input """ def setUp(self): self.op_type = "hash" self.init_test_case() self.inputs = {'X': self.in_seq} self.attrs = {'num_hash': 2, 'mod_by': 10000} self.outputs = {'Out': self.out_seq} def init_test_case(self): self.in_seq = np.array([1, 2**32 + 1]).reshape((2, 1)).astype("int64") self.out_seq = np.array([1269, 9609, 3868, 7268]).reshape((2, 2, 1)) def test_check_output(self): self.check_output() class TestHashOp3(TestHashOp): """ Case: int64 type input int64 type mod_by attr """ def setUp(self): self.op_type = "hash" self.init_test_case() self.inputs = {'X': self.in_seq} self.attrs = {'num_hash': 2, 'mod_by': 2**32} self.outputs = {'Out': self.out_seq} def init_test_case(self): self.in_seq = np.array([10, 5]).reshape((2, 1)).astype("int64") self.out_seq = np.array( [1204014882, 393011615, 3586283837, 2814821595]).reshape((2, 2, 1)) def test_check_output(self): self.check_output() class TestHashOpError(unittest.TestCase): def test_errors(self): with fluid.program_guard(fluid.Program(), fluid.Program()): input_data = np.random.randint(0, 10, (8, 1)).astype("int32") def test_Variable(): # the input type must be Variable fluid.layers.hash(input=input_data, hash_size=2**32) self.assertRaises(TypeError, test_Variable) def test_type(): # dtype must be int32, int64. x2 = fluid.layers.data( name='x2', shape=[1], dtype="float32", lod_level=1) fluid.layers.hash(input=x2, hash_size=2**32) self.assertRaises(TypeError, test_type) def test_hash_size_type(): # hash_size dtype must be int32, int64. x3 = fluid.layers.data( name='x3', shape=[1], dtype="int32", lod_level=1) fluid.layers.hash(input=x3, hash_size=1024.5) self.assertRaises(TypeError, test_hash_size_type) def test_num_hash_type(): # num_hash dtype must be int32, int64. x4 = fluid.layers.data( name='x4', shape=[1], dtype="int32", lod_level=1) fluid.layers.hash(input=x4, hash_size=2**32, num_hash=2.5) self.assertRaises(TypeError, test_num_hash_type) if __name__ == "__main__": unittest.main()