import math import paddle.v2 as paddle def db_lstm(word_dict_len, label_dict_len, pred_len): mark_dict_len = 2 word_dim = 32 mark_dim = 5 hidden_dim = 512 depth = 8 #8 features def d_type(size): return paddle.data_type.integer_value_sequence(size) word = paddle.layer.data(name='word_data', type=d_type(word_dict_len)) predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len)) ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len)) ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len)) ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len)) ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len)) ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len)) mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len)) default_std = 1 / math.sqrt(hidden_dim) / 3.0 emb_para = paddle.attr.Param(name='emb', initial_std=0., learning_rate=0.) std_0 = paddle.attr.Param(initial_std=0.) std_default = paddle.attr.Param(initial_std=default_std) predicate_embedding = paddle.layer.embeding( size=word_dim, input=predicate, param_attr=paddle.attr.Param( name='vemb', initial_std=default_std)) mark_embedding = paddle.layer.embeding( size=mark_dim, input=mark, param_attr=std_0) word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] emb_layers = [ paddle.layer.embeding( size=word_dim, input=x, param_attr=emb_para) for x in word_input ] emb_layers.append(predicate_embedding) emb_layers.append(mark_embedding) hidden_0 = paddle.layer.mixed( size=hidden_dim, bias_attr=std_default, input=[ paddle.layer.full_matrix_projection( input=emb, param_attr=std_default) for emb in emb_layers ]) mix_hidden_lr = 1e-3 lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0) hidden_para_attr = paddle.attr.Param( initial_std=default_std, learning_rate=mix_hidden_lr) lstm_0 = paddle.layer.lstmemory( input=hidden_0, act=paddle.activation.Relu(), gate_act=paddle.activation.Sigmoid(), state_act=paddle.activation.Sigmoid(), bias_attr=std_0, param_attr=lstm_para_attr) #stack L-LSTM and R-LSTM with direct edges input_tmp = [hidden_0, lstm_0] for i in range(1, depth): mix_hidden = paddle.layer.mixed( size=hidden_dim, bias_attr=std_default, input=[ paddle.layer.full_matrix_projection( input=input_tmp[0], param_attr=hidden_para_attr), paddle.layer.full_matrix_projection( input=input_tmp[1], param_attr=lstm_para_attr) ]) lstm = paddle.layer.lstmemory( input=mix_hidden, act=paddle.activation.Relu(), gate_act=paddle.activation.Sigmoid(), state_act=paddle.activation.Sigmoid(), reverse=((i % 2) == 1), bias_attr=std_0, param_attr=lstm_para_attr) input_tmp = [mix_hidden, lstm] feature_out = paddle.layer.mixed( size=label_dict_len, bias_attr=std_default, input=[ paddle.layer.full_matrix_projection( input=input_tmp[0], param_attr=hidden_para_attr), paddle.layer.full_matrix_projection( input=input_tmp[1], param_attr=lstm_para_attr) ], ) return feature_out