/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. Indicesou may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/norm_op.h" namespace paddle { namespace operators { class NormOpMaker : public framework::OpProtoAndCheckerMaker { public: NormOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", "(Tensor) The input tensor of norm operator. " "The format of input tensor is NCHW. Where N is batch size, C is the " "number of channels, H and W is the height and width of feature."); AddInput("Scale", "(Tensor) The input tensor of norm operator. " "The format of input tensor is C * 1."); AddAttr("epsilon", "(float, default 1e-10) Constant " "for numerical stability.") .SetDefault(1.0e-10f); AddOutput("Out", "(Tensor) The output tensor of norm operator." "N * M." "M = C * H * W"); AddComment(R"DOC( "Input shape: $(N, C, H, W)$ Sclae shape: $(C, 1)$ Output shape: $(N, C, H, W)$ Where forward $$ [\frac {x_{1}}{\sqrt{\sum{x_{i}^{2}}}} \frac {x_{2}}{\sqrt{\sum{x_{i}^{2}}}} \frac {x_{3}}{\sqrt{\sum{x_{i}^{2}}}} \cdot \cdot \cdot \frac {x_{n}}{\sqrt{\sum{x_{i}^{2}}}}] $$ backward $$ \frac{\frac{\mathrm{d}L }{\mathrm{d}y_{1}} - \frac {x_{1}\sum {\frac{\mathrm{d} L}{\mathrm{d} y_{j}}}x_{j}}{\sum x_{j}^{2}} }{\sqrt{\sum{x_{j}^{2}}}} $$ )DOC"); } }; class NormOp : public framework::OperatorWithKernel { protected: framework::OpKernelType GetKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), ctx.device_context()); } public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of NormOp" "should not be null."); PADDLE_ENFORCE(ctx->HasInput("Scale"), "Input(Scale) of NormOp" "should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of NormOp should not be null."); auto in_x_dims = ctx->GetInputDim("X"); ctx->SetOutputDim("Out", in_x_dims); } }; class NormOpGrad : public framework::OperatorWithKernel { protected: framework::OpKernelType GetKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), ctx.device_context()); } public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "Input(X@GRAD) should not be null."); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP(norm, ops::NormOp, ops::NormOpMaker, norm_grad, ops::NormOpGrad); REGISTER_OP_CPU_KERNEL( norm, ops::NormKernel, ops::NormKernel); REGISTER_OP_CPU_KERNEL( norm_grad, ops::NormGradKernel, ops::NormGradKernel);