# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core class TestDLPack(unittest.TestCase): def test_dlpack_dygraph(self): paddle.disable_static() tensor = paddle.to_tensor(np.array([1, 2, 3, 4]).astype('int')) dlpack = paddle.utils.dlpack.to_dlpack(tensor) out_from_dlpack = paddle.utils.dlpack.from_dlpack(dlpack) if paddle.fluid.framework.in_dygraph_mode(): self.assertTrue( isinstance(out_from_dlpack, paddle.fluid.core.eager.Tensor) ) else: self.assertTrue(isinstance(out_from_dlpack, paddle.Tensor)) np.testing.assert_array_equal( np.array(out_from_dlpack), np.array([1, 2, 3, 4]).astype('int') ) def test_dlpack_tensor_larger_than_2dim(self): paddle.disable_static() numpy_data = np.random.randn(4, 5, 6) t = paddle.to_tensor(numpy_data) # TODO: There may be a reference count problem of to_dlpack. dlpack = paddle.utils.dlpack.to_dlpack(t) out = paddle.utils.dlpack.from_dlpack(dlpack) np.testing.assert_allclose(numpy_data, out.numpy(), rtol=1e-05) def test_dlpack_static(self): paddle.enable_static() tensor = fluid.create_lod_tensor( np.array([[1], [2], [3], [4]]).astype('int'), [[1, 3]], fluid.CPUPlace(), ) dlpack = paddle.utils.dlpack.to_dlpack(tensor) out_from_dlpack = paddle.utils.dlpack.from_dlpack(dlpack) self.assertTrue(isinstance(out_from_dlpack, fluid.core.Tensor)) np.testing.assert_array_equal( np.array(out_from_dlpack), np.array([[1], [2], [3], [4]]).astype('int'), ) # when build with cuda if core.is_compiled_with_cuda(): gtensor = fluid.create_lod_tensor( np.array([[1], [2], [3], [4]]).astype('int'), [[1, 3]], fluid.CUDAPlace(0), ) gdlpack = paddle.utils.dlpack.to_dlpack(gtensor) gout_from_dlpack = paddle.utils.dlpack.from_dlpack(gdlpack) self.assertTrue(isinstance(gout_from_dlpack, fluid.core.Tensor)) np.testing.assert_array_equal( np.array(gout_from_dlpack), np.array([[1], [2], [3], [4]]).astype('int'), ) def test_dlpack_dtype_conversion(self): paddle.disable_static() # DLpack does not explicitly support bool data type. dtypes = [ "float16", "float32", "float64", "int8", "int16", "int32", "int64", "uint8", ] data = np.ones((2, 3, 4)) for dtype in dtypes: x = paddle.to_tensor(data, dtype=dtype) dlpack = paddle.utils.dlpack.to_dlpack(x) o = paddle.utils.dlpack.from_dlpack(dlpack) self.assertEqual(x.dtype, o.dtype) np.testing.assert_allclose(x.numpy(), o.numpy(), rtol=1e-05) complex_dtypes = ["complex64", "complex128"] for dtype in complex_dtypes: x = paddle.to_tensor( [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]], dtype=dtype, ) dlpack = paddle.utils.dlpack.to_dlpack(x) o = paddle.utils.dlpack.from_dlpack(dlpack) self.assertEqual(x.dtype, o.dtype) np.testing.assert_allclose(x.numpy(), o.numpy(), rtol=1e-05) def test_dlpack_deletion(self): # See Paddle issue 47171 if paddle.is_compiled_with_cuda(): for i in range(80): a = paddle.rand(shape=[1024 * 128, 1024], dtype="float32") dlpack = paddle.utils.dlpack.to_dlpack(a) b = paddle.utils.dlpack.from_dlpack(dlpack) def test_to_dlpack_for_loop(self): # See Paddle issue 50120 for i in range(10): x = paddle.rand([3, 5]) dlpack = paddle.utils.dlpack.to_dlpack(x) class TestRaiseError(unittest.TestCase): def test_from_dlpack_raise_type_error(self): self.assertRaises( TypeError, paddle.utils.dlpack.from_dlpack, np.zeros(5) ) def test_to_dlpack_raise_type_error(self): self.assertRaises(TypeError, paddle.utils.dlpack.to_dlpack, np.zeros(5)) if __name__ == '__main__': unittest.main()