# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest import numpy as np import paddle from paddle.fluid.framework import ( Program, convert_np_dtype_to_dtype_, program_guard, ) sys.path.append("../") from eager_op_test import OpTest class SequenceMaskTestBase(OpTest): def initDefaultParameters(self): self.op_type = 'sequence_mask' self.maxlen = 10 self.mask_dtype = 'int64' self.x = [[0, 3, 4], [5, 7, 9]] def initParameters(self): pass def setUp(self): self.initDefaultParameters() self.initParameters() if not isinstance(self.x, np.ndarray): self.x = np.array(self.x) self.inputs = {'X': self.x} self.outputs = {'Y': self.calc_ground_truth_mask()} self.attrs = { 'maxlen': self.maxlen, 'out_dtype': convert_np_dtype_to_dtype_(self.mask_dtype), } def calc_ground_truth_mask(self): maxlen = np.max(self.x) if self.maxlen < 0 else self.maxlen shape = self.x.shape + (maxlen,) index_broadcast = np.broadcast_to( np.reshape(range(maxlen), newshape=[1] * self.x.ndim + [-1]), shape=shape, ) x_broadcast = np.broadcast_to( np.reshape(self.x, newshape=self.x.shape + (-1,)), shape=shape ) return (index_broadcast < x_broadcast).astype(self.mask_dtype) def test_check_output(self): self.check_output() class SequenceMaskTest1(SequenceMaskTestBase): def initParameters(self): self.mask_dtype = 'bool' class SequenceMaskTest2(SequenceMaskTestBase): def initParameters(self): self.mask_dtype = 'uint8' class SequenceMaskTest3(SequenceMaskTestBase): def initParameters(self): self.mask_dtype = 'int32' class SequenceMaskTest4(SequenceMaskTestBase): def initParameters(self): self.mask_dtype = 'float32' class SequenceMaskTest5(SequenceMaskTestBase): def initParameters(self): self.mask_dtype = 'float64' class SequenceMaskTest6(SequenceMaskTestBase): def initParameters(self): self.maxlen = -1 class SequenceMaskTestBase_tensor_attr(OpTest): def initDefaultParameters(self): self.op_type = 'sequence_mask' self.maxlen = 10 self.maxlen_tensor = np.ones((1), 'int32') * 10 self.mask_dtype = 'int64' self.x = [[0, 3, 4], [5, 7, 9]] def initParameters(self): pass def setUp(self): self.initDefaultParameters() self.initParameters() if not isinstance(self.x, np.ndarray): self.x = np.array(self.x) self.inputs = {'X': self.x, 'MaxLenTensor': self.maxlen_tensor} self.outputs = {'Y': self.calc_ground_truth_mask()} self.attrs = {'out_dtype': convert_np_dtype_to_dtype_(self.mask_dtype)} def calc_ground_truth_mask(self): maxlen = np.max(self.x) if self.maxlen < 0 else self.maxlen shape = self.x.shape + (maxlen,) index_broadcast = np.broadcast_to( np.reshape(range(maxlen), newshape=[1] * self.x.ndim + [-1]), shape=shape, ) x_broadcast = np.broadcast_to( np.reshape(self.x, newshape=self.x.shape + (-1,)), shape=shape ) return (index_broadcast < x_broadcast).astype(self.mask_dtype) def test_check_output(self): self.check_output() class SequenceMaskTest1_tensor_attr(SequenceMaskTestBase_tensor_attr): def initParameters(self): self.mask_dtype = 'bool' class SequenceMaskTest2_tensor_attr(SequenceMaskTestBase_tensor_attr): def initParameters(self): self.mask_dtype = 'uint8' class SequenceMaskTest3_tensor_attr(SequenceMaskTestBase_tensor_attr): def initParameters(self): self.mask_dtype = 'int32' class SequenceMaskTest4_tensor_attr(SequenceMaskTestBase_tensor_attr): def initParameters(self): self.mask_dtype = 'float32' class SequenceMaskTest5_tensor_attr(SequenceMaskTestBase_tensor_attr): def initParameters(self): self.mask_dtype = 'float64' class TestSequenceMaskOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): input_data = np.random.uniform(1, 5, [4]).astype("float32") def test_Variable(): # the input must be Variable paddle.static.nn.sequence_lod.sequence_mask( input_data, maxlen=4 ) self.assertRaises(TypeError, test_Variable) class TestSequenceMaskWithEmptyTensor(unittest.TestCase): def test_empty(self): paddle.disable_static() lengths = paddle.to_tensor(np.array([], dtype=np.int64)) mask = paddle.nn.functional.sequence_mask(lengths) self.assertEqual(list(mask.shape), [0, 0]) paddle.enable_static() if __name__ == '__main__': unittest.main()