/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/common/bfloat16.h" #include "paddle/phi/common/complex.h" #include "paddle/phi/common/float16.h" #include "paddle/phi/core/compat/convert_utils.h" // See Note [ Why still include the fluid headers? ] #include "paddle/fluid/memory/malloc.h" namespace phi { DenseTensor::DenseTensor(Allocator* a, const DenseTensorMeta& meta) : meta_(meta), holder_(a->Allocate(SizeOf(dtype()) * numel())) {} DenseTensor::DenseTensor(Allocator* a, DenseTensorMeta&& meta) : meta_(std::move(meta)), holder_(a->Allocate(SizeOf(dtype()) * numel())) {} DenseTensor::DenseTensor(const std::shared_ptr& holder, const DenseTensorMeta& meta) : meta_(meta), holder_(holder) {} DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) { holder_ = other.holder_; #ifdef PADDLE_WITH_MKLDNN format_ = other.format_; #endif } DenseTensor& DenseTensor::operator=(const DenseTensor& other) { meta_ = other.meta(); holder_ = other.holder_; #ifdef PADDLE_WITH_MKLDNN format_ = other.format_; #endif return *this; } DenseTensor& DenseTensor::operator=(DenseTensor&& other) { meta_ = std::move(other.meta_); std::swap(holder_, other.holder_); return *this; } int64_t DenseTensor::numel() const { if (meta_.is_scalar) { return 1; } return product(meta_.dims); } bool DenseTensor::IsSharedWith(const DenseTensor& b) const { return holder_ && holder_ == b.Holder(); } void* DenseTensor::AllocateFrom(Allocator* allocator, DataType dtype, size_t requested_size) { PADDLE_ENFORCE_NOT_NULL( allocator, paddle::platform::errors::InvalidArgument( "Required allocator shall not be nullptr, but received nullptr.")); if (this->dtype() != dtype) { VLOG(10) << "change data type in mutbale_data, target dtype - " << dtype; meta_.dtype = dtype; } PADDLE_ENFORCE( valid(), paddle::platform::errors::PreconditionNotMet( "The meta data must be valid when call the mutable data function.")); size_t bytes = numel() * SizeOf(this->dtype()); if (requested_size) { PADDLE_ENFORCE_GE(requested_size, bytes, paddle::platform::errors::InvalidArgument( "The reserved size %d should be enough to meet the " "volume required by metadata %d.", requested_size, bytes)); bytes = requested_size; } // TODO(paddle-dev): In case of the allocator of storage_ is different with // the incoming allocator, we should re-alloc data using the incoming // allocator. if (!holder_ || holder_->size() < bytes + meta_.offset) { meta_.offset = 0; VLOG(10) << "Allocate data with bytes: " << bytes; ResetHolder(allocator->Allocate(bytes)); } return reinterpret_cast(reinterpret_cast(holder_->ptr()) + meta_.offset); } template const T* DenseTensor::data() const { check_memory_size(); PADDLE_ENFORCE( (dtype() == paddle::experimental::CppTypeToDataType::Type()), paddle::platform::errors::InvalidArgument( "The type of data we are trying to retrieve does not match the " "type of data currently contained in the container.")); return static_cast(data()); } template T* DenseTensor::data() { check_memory_size(); PADDLE_ENFORCE( (dtype() == paddle::experimental::CppTypeToDataType::Type()), paddle::platform::errors::InvalidArgument( "The type of data we are trying to retrieve does not match the " "type of data currently contained in the container.")); return static_cast(data()); } void* DenseTensor::data() { check_memory_size(); PADDLE_ENFORCE_NOT_NULL( holder_, paddle::platform::errors::PreconditionNotMet( "The storage must be valid when call the data function.")); return reinterpret_cast(reinterpret_cast(holder_->ptr()) + meta_.offset); } const void* DenseTensor::data() const { check_memory_size(); PADDLE_ENFORCE_NOT_NULL( holder_, paddle::platform::errors::PreconditionNotMet( "The storage must be valid when call the data function.")); return reinterpret_cast( reinterpret_cast(holder_->ptr()) + meta_.offset); } void DenseTensor::set_meta(DenseTensorMeta&& meta) { PADDLE_ENFORCE(!meta_.valid(), paddle::platform::errors::InvalidArgument( "Only when the original attribute of Tensor is " "incomplete, can it be reset.")); meta_ = std::move(meta); } void DenseTensor::set_meta(const DenseTensorMeta& meta) { PADDLE_ENFORCE( meta.valid(), paddle::platform::errors::InvalidArgument( "Input meta is invalid, please check the meta attribute.")); meta_.dims = meta.dims; meta_.dtype = meta.dtype; meta_.is_scalar = meta.is_scalar; meta_.layout = meta.layout; meta_.lod = meta.lod; meta_.offset = meta.offset; } /* @jim19930609: This interface will be further modified util we finalized the design for Allocator - Allocation For now, we have to temporarily accommodate two independent use cases: 1. Designed behaviour: DenseTensor constructed with its underlying storage_ initialized 2. Legacy behaviour(fluid): DenseTensor constructed using default constructor, where storage_ won't be initialized until the first call to mutable_data(place) */ void DenseTensor::ResizeAndAllocate(const DDim& dims) { meta_.dims = dims; if (holder_ != nullptr && place().GetType() != AllocationType::UNDEFINED) { mutable_data(place()); } } void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; } #define DATA_MEMBER_FUNC_INSTANTIATION(dtype) \ template const dtype* DenseTensor::data() const; \ template dtype* DenseTensor::data(); DATA_MEMBER_FUNC_INSTANTIATION(bool); DATA_MEMBER_FUNC_INSTANTIATION(int8_t); DATA_MEMBER_FUNC_INSTANTIATION(uint8_t); DATA_MEMBER_FUNC_INSTANTIATION(int16_t); DATA_MEMBER_FUNC_INSTANTIATION(uint16_t); DATA_MEMBER_FUNC_INSTANTIATION(int32_t); DATA_MEMBER_FUNC_INSTANTIATION(uint32_t); DATA_MEMBER_FUNC_INSTANTIATION(int64_t); DATA_MEMBER_FUNC_INSTANTIATION(uint64_t); DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::bfloat16); DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::float16); DATA_MEMBER_FUNC_INSTANTIATION(float); DATA_MEMBER_FUNC_INSTANTIATION(double); DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex); DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex); #undef DATA_MEMBER_FUNC_INSTANTIATION } // namespace phi