// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/fluid/operators/reduce_op.h" namespace paddle { namespace operators { struct MaxFunctor { template void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) { y->device(place) = x->maximum(dim); } }; struct MinFunctor { template void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) { y->device(place) = x->minimum(dim); } }; struct MaxOrMinGradFunctor { template void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy, const Dim& dim, int size) { auto equals = (*x) == y->broadcast(dim); auto ones = dx->constant(1); auto zeros = dx->constant(0); // If there are multiple minimum or maximum elements, the subgradient of // each is the set [0, 1], and we pass gradient to all of them here. dx->device(place) = dy->broadcast(dim) * equals.select(ones, zeros); } }; } // namespace operators } // namespace paddle