# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import paddle import paddle.distributed as dist from paddle.distributed import fleet def set_random_seed(seed): """Set random seed for reproducability.""" random.seed(seed) np.random.seed(seed) paddle.seed(seed) fleet.meta_parallel.model_parallel_random_seed(seed) class ColumnLinearNet(paddle.nn.Layer): def __init__(self, input_size, output_size, global_dtype): super().__init__() self.parallel_linear = fleet.meta_parallel.ColumnParallelLinear( in_features=input_size, out_features=output_size, weight_attr=None, has_bias=True, gather_output=True, name="test_column_linear", ) def forward(self, x): output = self.parallel_linear(x) return output class RowLinearNet(paddle.nn.Layer): def __init__(self, input_size, output_size): super().__init__() self.parallel_linear = fleet.meta_parallel.RowParallelLinear( in_features=input_size, out_features=output_size, has_bias=True, input_is_parallel=False, name="test_row_linear", ) def forward(self, x): output = self.parallel_linear(x) return output class EmbeddingNet(paddle.nn.Layer): def __init__(self, vocab_size, hidden_size): super().__init__() self.embedding = fleet.meta_parallel.VocabParallelEmbedding( vocab_size, hidden_size ) def forward(self, x): output = self.embedding(x) return output class SimpleMatmul(paddle.nn.Layer): def __init__(self, weight, output_size, global_dtype): super().__init__() self.weight = paddle.create_parameter( shape=weight.shape, dtype=global_dtype, attr=paddle.ParamAttr( initializer=paddle.nn.initializer.Assign(weight) ), ) self.bias = self.create_parameter( shape=[output_size], dtype=global_dtype, attr=paddle.ParamAttr( initializer=paddle.nn.initializer.Constant(0.0) ), ) def forward(self, x): output = paddle.matmul(x, self.weight) + self.bias return output class SimpleEmbedding(paddle.nn.Layer): def __init__(self, vocab_size, hidden_size, weight): super().__init__() self.embedding = paddle.nn.Embedding( vocab_size, hidden_size, weight_attr=paddle.framework.ParamAttr( name="origin_embedding", initializer=paddle.nn.initializer.Assign(weight), ), ) def forward(self, x): output = self.embedding(x) return output class TestDistTraning(unittest.TestCase): def setUp(self): strategy = fleet.DistributedStrategy() self.model_parallel_size = 2 strategy.hybrid_configs = { "dp_degree": 1, "mp_degree": self.model_parallel_size, "pp_degree": 1, } fleet.init(is_collective=True, strategy=strategy) def test_column_parallel_layer(self): set_random_seed(1024) global_dtype = "float32" input_size_per_card = 17 input_size = input_size_per_card * self.model_parallel_size output_size_per_card = 13 output_size = output_size_per_card * self.model_parallel_size batch_size = 4 model_a = ColumnLinearNet(input_size, output_size, global_dtype) # get w check_group = dist.new_group(list(range(self.model_parallel_size))) integral_w = [] partial_w = model_a.parallel_linear.weight.clone().detach() paddle.distributed.all_gather(integral_w, partial_w, group=check_group) integral_w = paddle.concat(integral_w, axis=1) model_b = SimpleMatmul(integral_w, output_size, global_dtype) optimizer_a = paddle.optimizer.SGD( learning_rate=0.001, parameters=model_a.parameters() ) optimizer_b = paddle.optimizer.SGD( learning_rate=0.001, parameters=model_b.parameters() ) for idx in range(5): input = paddle.randn([batch_size, input_size], global_dtype) input.stop_gradient = True output_a = model_a(input) loss_a = output_a.mean() loss_a.backward() output_b = model_b(input) loss_b = output_b.mean() loss_b.backward() optimizer_a.step() optimizer_b.step() np.testing.assert_allclose(loss_a.numpy(), loss_b.numpy()) def test_row_parallel_layer(self): global_dtype = "float32" paddle.set_default_dtype(global_dtype) set_random_seed(1024) self.hcg = fleet.get_hybrid_communicate_group() self.word_size = self.hcg.get_model_parallel_world_size() self.rank_id = self.hcg.get_model_parallel_rank() input_size_per_card = 11 input_size = input_size_per_card * self.model_parallel_size output_size_per_card = 10 output_size = output_size_per_card * self.model_parallel_size batch_size = 4 model_a = RowLinearNet(input_size, output_size) # get w check_group = dist.new_group(list(range(self.model_parallel_size))) integral_w = [] partial_w = model_a.parallel_linear.weight.clone().detach() paddle.distributed.all_gather(integral_w, partial_w, group=check_group) integral_w = paddle.concat(integral_w, axis=0) model_b = SimpleMatmul(integral_w, output_size, global_dtype) optimizer_a = paddle.optimizer.SGD( learning_rate=0.001, parameters=model_a.parameters() ) optimizer_b = paddle.optimizer.SGD( learning_rate=0.001, parameters=model_b.parameters() ) for idx in range(5): input = paddle.randn([batch_size, input_size], global_dtype) input.stop_gradient = True output_a = model_a(input) loss_a = output_a.mean() loss_a.backward() output_b = model_b(input) loss_b = output_b.mean() loss_b.backward() optimizer_a.step() optimizer_b.step() np.testing.assert_allclose( loss_a.numpy(), loss_b.numpy(), rtol=5e-6 ) def test_parallel_embedding(self): batch_size = 17 seq_length = 23 vocab_size_per_card = 2 vocab_size = vocab_size_per_card * self.model_parallel_size hidden_size = 2 seed = 1236 set_random_seed(seed) rank_id = dist.get_rank() # model_a model_a = EmbeddingNet(vocab_size, hidden_size) # model_b check_group = dist.new_group(list(range(self.model_parallel_size))) integral_w = [] partial_w = model_a.embedding.weight.clone().detach() paddle.distributed.all_gather(integral_w, partial_w, group=check_group) result_w = [] for idx in range(len(integral_w)): tmp = paddle.gather( integral_w[idx], paddle.to_tensor(list(range(vocab_size_per_card))), ) result_w.append(tmp) integral_w = paddle.concat(result_w, axis=0) model_b = SimpleEmbedding(vocab_size, hidden_size, integral_w) optimizer_a = paddle.optimizer.SGD( learning_rate=0.001, parameters=model_a.parameters() ) optimizer_b = paddle.optimizer.SGD( learning_rate=0.001, parameters=model_b.parameters() ) for _ in range(5): np_input_data = np.random.randint( 0, vocab_size, (batch_size, seq_length) ) input_data = paddle.to_tensor(np_input_data, dtype="int32") output_a = model_a(input_data) loss_a = output_a.mean() output_b = model_b(input_data) loss_b = output_b.mean() loss_a.backward() loss_b.backward() optimizer_a.step() optimizer_b.step() print(loss_a.numpy(), loss_b.numpy()) np.testing.assert_allclose(loss_a.numpy(), loss_b.numpy()) def test_parallel_cross_entropy(self): batch_size = 8 seq_length = 16 class_size_per_card = 2 vocab_size = class_size_per_card * self.model_parallel_size seed = 100 set_random_seed(seed) rank_id = dist.get_rank() # model_a model_a = fleet.meta_parallel.ParallelCrossEntropy() model_b = paddle.nn.CrossEntropyLoss(reduction="none") paddle.seed(rank_id * 10) random.seed(seed) np.random.seed(seed) for _ in range(5): np_label = np.random.randint( 0, vocab_size, (batch_size, seq_length) ) label = paddle.to_tensor(np_label, dtype="int64") data = paddle.randn( shape=[batch_size, seq_length, class_size_per_card], dtype='float32', ) data.stop_gradient = False check_group = dist.new_group(list(range(self.model_parallel_size))) integral_data = [] partial_data = data.clone().detach() paddle.distributed.all_gather( integral_data, partial_data, group=check_group ) integral_data = paddle.concat(integral_data, axis=-1) integral_data = integral_data.detach().clone() integral_data.stop_gradient = False loss_a = model_a(data, label).sum() / batch_size loss_b = model_b(integral_data, label).sum() / batch_size print("loss_a: ", loss_a.numpy(), "loss_b: ", loss_b.numpy()) np.testing.assert_allclose( loss_a.numpy(), loss_b.numpy(), rtol=1e-6 ) loss_a.backward() loss_b.backward() integral_grad = [] partial_grad = data.grad.clone().detach() paddle.distributed.all_gather( integral_grad, partial_grad, group=check_group ) integral_grad = paddle.concat(integral_grad, axis=-1) np.testing.assert_allclose( integral_data.grad.numpy(False), integral_grad.numpy(False), rtol=1e-6, ) if __name__ == '__main__': unittest.main()