// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "paddle/fluid/inference/api/paddle_mkldnn_quantizer_config.h" namespace paddle { MkldnnQuantizerConfig::MkldnnQuantizerConfig() { // The default configuration of scale computing algorightms rules_["conv2d"]["Input"] = ScaleAlgo::KL; rules_["conv2d"]["Filter"] = ScaleAlgo::MAX_CH; rules_["conv2d"]["Bias"] = ScaleAlgo::NONE; // do not compute scale rules_["conv2d"]["ResidualData"] = ScaleAlgo::KL; rules_["conv2d"]["Output"] = ScaleAlgo::KL; rules_["pool2d"]["X"] = ScaleAlgo::KL; rules_["pool2d"]["Out"] = ScaleAlgo::KL; rules_["concat"]["X"] = ScaleAlgo::KL; rules_["concat"]["Out"] = ScaleAlgo::KL; rules_["prior_box"]["Input"] = ScaleAlgo::KL; rules_["prior_box"]["Image"] = ScaleAlgo::NONE; rules_["prior_box"]["Boxes"] = ScaleAlgo::NONE; rules_["prior_box"]["Variances"] = ScaleAlgo::NONE; // Transpose2 does not perform calculation on the data. Scale is calculated on // input data and assign to Quantize and Dequantize scale. rules_["transpose2"]["X"] = ScaleAlgo::KL; rules_["transpose2"]["Out"] = ScaleAlgo::NONE; rules_["slice"]["Input"] = ScaleAlgo::KL; rules_["slice"]["Out"] = ScaleAlgo::NONE; rules_["shape"]["Input"] = ScaleAlgo::KL; rules_["shape"]["Out"] = ScaleAlgo::NONE; rules_["fc"]["Input"] = ScaleAlgo::KL; rules_["fc"]["W"] = ScaleAlgo::MAX_CH_T; rules_["fc"]["Bias"] = ScaleAlgo::NONE; rules_["fc"]["Out"] = ScaleAlgo::KL; rules_["matmul"]["X"] = ScaleAlgo::KL; rules_["matmul"]["Y"] = ScaleAlgo::KL; rules_["matmul"]["Out"] = ScaleAlgo::KL; rules_["elementwise_add"]["X"] = ScaleAlgo::KL; rules_["elementwise_add"]["Y"] = ScaleAlgo::KL; rules_["elementwise_add"]["Out"] = ScaleAlgo::KL; rules_["elementwise_mul"]["X"] = ScaleAlgo::KL; rules_["elementwise_mul"]["Y"] = ScaleAlgo::KL; rules_["elementwise_mul"]["Out"] = ScaleAlgo::KL; rules_["elementwise_sub"]["X"] = ScaleAlgo::KL; rules_["elementwise_sub"]["Y"] = ScaleAlgo::KL; rules_["elementwise_sub"]["Out"] = ScaleAlgo::KL; // Reshape2 does not perform calculation on the data and shapes are not // changed. Scale is calculated on input data and assign to Quantize and // Dequantize scale. rules_["reshape2"]["X"] = ScaleAlgo::KL; rules_["reshape2"]["Shape"] = ScaleAlgo::NONE; rules_["reshape2"]["ShapeTensor"] = ScaleAlgo::NONE; rules_["reshape2"]["XShape"] = ScaleAlgo::NONE; rules_["reshape2"]["Out"] = ScaleAlgo::NONE; rules_["fusion_gru"]["X"] = ScaleAlgo::KL; rules_["fusion_gru"]["H0"] = ScaleAlgo::NONE; rules_["fusion_gru"]["Bias"] = ScaleAlgo::NONE; rules_["fusion_gru"]["WeightX"] = ScaleAlgo::NONE; // Weights will be handled rules_["fusion_gru"]["WeightH"] = ScaleAlgo::NONE; // separately rules_["fusion_gru"]["ReorderedH0"] = ScaleAlgo::NONE; rules_["fusion_gru"]["XX"] = ScaleAlgo::NONE; rules_["fusion_gru"]["BatchedInput"] = ScaleAlgo::NONE; rules_["fusion_gru"]["BatchedOut"] = ScaleAlgo::NONE; rules_["fusion_gru"]["Hidden"] = ScaleAlgo::KL; rules_["multi_gru"]["X"] = ScaleAlgo::KL; rules_["multi_gru"]["Bias"] = ScaleAlgo::NONE; rules_["multi_gru"]["WeightX"] = ScaleAlgo::NONE; // Weights will be handled rules_["multi_gru"]["WeightH"] = ScaleAlgo::NONE; // separately rules_["multi_gru"]["Scale_weights"] = ScaleAlgo::NONE; rules_["multi_gru"]["Hidden"] = ScaleAlgo::KL; rules_["fusion_lstm"]["X"] = ScaleAlgo::KL; rules_["fusion_lstm"]["H0"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["C0"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["Bias"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["WeightX"] = ScaleAlgo::NONE; // Weights will be handled separately rules_["fusion_lstm"]["WeightH"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["XX"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["Cell"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["BatchedInput"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["BatchedHidden"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["BatchedCell"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["BatchedGate"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["BatchedCellPreAct"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["ReorderedH0"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["ReorderedC0"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["CheckedCell"] = ScaleAlgo::NONE; rules_["fusion_lstm"]["Hidden"] = ScaleAlgo::KL; rules_["nearest_interp"]["X"] = ScaleAlgo::KL; rules_["nearest_interp"]["OutSize"] = ScaleAlgo::NONE; rules_["nearest_interp"]["SizeTensor"] = ScaleAlgo::NONE; rules_["nearest_interp"]["Scale"] = ScaleAlgo::NONE; rules_["nearest_interp"]["Out"] = ScaleAlgo::NONE; rules_["nearest_interp_v2"]["X"] = ScaleAlgo::KL; rules_["nearest_interp_v2"]["OutSize"] = ScaleAlgo::NONE; rules_["nearest_interp_v2"]["SizeTensor"] = ScaleAlgo::NONE; rules_["nearest_interp_v2"]["Scale"] = ScaleAlgo::NONE; rules_["nearest_interp_v2"]["Out"] = ScaleAlgo::NONE; } ScaleAlgo MkldnnQuantizerConfig::scale_algo( const std::string& op_type_name, const std::string& conn_name) const { if (rules_.find(op_type_name) != rules_.end()) { auto op_rule = rules_.at(op_type_name); if (op_rule.find(conn_name) != op_rule.end()) return op_rule.at(conn_name); } return default_scale_algo_; } } // namespace paddle