# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import paddle import paddle.distributed as dist from paddle.fluid import core class TestReshardSToR: def __init__(self): self._shape = eval(os.getenv("shape")) self._dtype = os.getenv("dtype") self._seeds = eval(os.getenv("seeds")) self._shard = eval(os.getenv("shard")) self._backend = os.getenv("backend") self._mesh = dist.ProcessMesh([0, 1], dim_names=["x"]) def run_test_case(self): if self._backend == "cpu": paddle.set_device("cpu") place = paddle.CPUPlace() elif self._backend == "gpu": place = paddle.CUDAPlace(dist.get_rank()) dev_ctx = core.DeviceContext.create(place) a = paddle.ones(self._shape) in_shard_specs = [None for i in range(len(self._shape))] in_shard_specs[self._shard] = "x" out_shard_specs = [None for i in range(len(self._shape))] dist_attr = dist.DistAttr( mesh=self._mesh, sharding_specs=in_shard_specs ) out_dist_attr = dist.DistAttr( mesh=self._mesh, sharding_specs=out_shard_specs ) input_tensor = dist.shard_tensor(a, dist_attr=dist_attr) reshard_func = core.SToRReshardFunction() assert reshard_func.is_suitable(input_tensor, out_dist_attr) out = reshard_func.eval(dev_ctx, input_tensor, out_dist_attr) out_shape = list(self._shape) out_shape[self._shard] = out_shape[self._shard] * 2 assert np.equal(out.shape, out_shape).all() if __name__ == '__main__': TestReshardSToR().run_test_case()